
Chapter

IV-3
IV-3User-Defined Functions

Overview.. 30
Function Syntax... 31

The Function Name ... 31
The Procedure Subtype... 32
The Parameter List and Parameter Declarations... 32
Integer Parameters... 33
Optional Parameters.. 33
Inline Parameters ... 33
Local Variable Declarations.. 34
Body Code... 35
Line Continuation.. 35
The Return Statement.. 35

Expression Evaluation.. 36
Integer Expressions ... 36
Integer Expressions in Wave Assignment Statements ... 37

Conditional Statements in Functions ... 37
If-Else-Endif .. 37
If-Elseif-Endif.. 38
Comparisons... 38

Operators in Functions... 39
Bitwise and Logical Operators... 39

Using Bitwise Operators.. 39
Bit Shift Operators ... 40
Increment and Decrement Operators ... 40

Switch Statements ... 41
Loops... 42

Do-While Loop... 42
Nested Do-While Loops.. 43
While Loop ... 43
For Loop .. 43
Break Statement ... 44
Continue Statement ... 45

Flow Control for Aborts... 45
AbortOnRTE Keyword ... 45
AbortOnValue Keyword .. 45
try-catch-endtry Flow Control ... 45

Simple try-catch-endtry Example... 46
Complex try-catch-endtry Example... 46

User Abort Key Combinations... 47
Constants.. 47
Pragmas .. 48

The rtGlobals Pragma ... 48
The version Pragma... 50
The IgorVersion Pragma... 50

Chapter IV-3 — User-Defined Functions

IV-28

The hide Pragma .. 50
The ModuleName Pragma ... 50
The IndependentModule Pragma ... 51
The rtFunctionErrors Pragma .. 51
The TextEncoding Pragma ... 51
Unknown Pragmas .. 53

Proc Pictures .. 53
How Parameters Work... 53

Example of Pass-By-Value.. 54
Pass-By-Reference.. 54
How Waves Are Passed.. 55
Using Optional Parameters .. 55

Local Versus Global Variables .. 56
Local Variables Used by Igor Operations.. 56
Converting a String into a Reference Using $... 57

Using $ to Refer to a Window.. 58
Using $ In a Data Folder Path .. 58

Compile Time Versus Runtime... 58
Accessing Global Variables and Waves... 59

Runtime Lookup of Globals ... 60
Put WAVE Declaration After Wave Is Created... 61
Runtime Lookup Failure... 61
Runtime Lookup Failure and the Debugger.. 62
Accessing Complex Global Variables and Waves .. 62
Accessing Text Waves ... 62
Accessing Global Variables and Waves Using Liberal Names ... 62
Runtime Lookup Example.. 64
Automatic Creation of WAVE, NVAR and SVAR References.. 65

Wave References ... 65
Automatic Creation of WAVE References ... 66
Standalone WAVE Reference Statements ... 66
Inline WAVE Reference Statements ... 67
WAVE Reference Types.. 67
WAVE Reference Type Flags ... 68
Problems with Automatic Creation of WAVE References .. 69
WAVE Reference Is Needed to Pass a Wave By Name.. 70
Wave Reference Function Results ... 70
Wave Reference Waves... 71

Data Folder References... 72
Using Data Folder References.. 73
The /SDFR Flag... 74
The DFREF Type.. 74
Built-in DFREF Functions... 75
Checking Data Folder Reference Validity.. 75
Data Folder Reference Function Results .. 75
Data Folder Reference Waves .. 76

Accessing Waves in Functions .. 76
Wave Reference Passed as Parameter... 76
Wave Accessed Via String Passed as Parameter ... 77
Wave Accessed Via String Calculated in Function... 78
Wave Accessed Via Literal Wave Name .. 78
Wave Accessed Via Wave Reference Function ... 78

Destination Wave Parameters... 79
Wave Reference as Destination Wave .. 79
Exceptions To Destination Wave Rules.. 80
Updating of Destination Wave References .. 80

Chapter IV-3 — User-Defined Functions

IV-29

Inline Wave References With Destination Waves... 80
Destination Wave Reference Issues... 80
Changes in Destination Wave Behavior ... 81

Programming With Trace Names... 81
Trace Name Parameters.. 82
User-defined Trace Names... 82
Trace Name Programming Example .. 83

Free Waves ... 84
Free Wave Created When Free Data Folder Is Deleted.. 85
Free Wave Created For User Function Input Parameter ... 85
Free Wave Lifetime.. 86
Free Wave Leaks .. 87
Converting a Free Wave to a Global Wave.. 88

Free Data Folders .. 88
Free Data Folder Lifetime... 89
Free Data Folder Objects Lifetime... 90
Converting a Free Data Folder to a Global Data Folder .. 91

Structures in Functions .. 91
Simple Structure Example .. 91
Defining Structures.. 92
Using Structures... 93
Built-In Structures.. 95
Applications of Structures .. 95
Using Structures with Windows and Controls ... 95
Limitations of Structures .. 96

Static Functions ... 96
ThreadSafe Functions ... 97
Function Overrides ... 98
Function References.. 98
Conditional Compilation ... 100

Conditional Compilation Directives ... 100
Conditional Compilation Symbols.. 100
Predefined Global Symbols .. 101
Conditional Compilation Examples.. 101

Function Errors.. 102
Coercion in Functions... 102
Operations in Functions... 102
Updates During Function Execution ... 103
Aborting Functions ... 103
Igor Pro 7 Programming Extensions .. 104

Double and Complex Variable Types... 104
Integer Variable Types .. 104
Integer Expressions in User-Defined Functions.. 104
Inline Parameters in User-Defined Functions ... 104
Line Continuation in User-Defined Functions .. 104
Bit Shift Operators in User-Defined Functions.. 104
Increment and Decrement Operators in User-Defined Functions.. 104

Legacy Code Issues... 104
Old-Style Comments and Compatibility Mode .. 105
Text After Flow Control.. 105
Global Variables Used by Igor Operations .. 106
Direct Reference to Globals .. 106

Chapter IV-3 — User-Defined Functions

IV-30

Overview
Most of Igor programming consists of writing user-defined functions.

A function has zero or more parameters. You can use local variables to store intermediate results. The func-
tion body consists of Igor operations, assignment statements, flow control statements, and calls to other
functions.

A function can return a numeric, string, wave reference or data folder reference result. It can also have a
side-effect, such as creating a wave or creating a graph.

Before we dive into the technical details, here is an informal look at some simple examples.
Function Hypotenuse(side1, side2)

Variable side1, side2

Variable hyp
hyp = sqrt(side1^2 + side2^2)

return hyp
End

The Hypotenuse function takes two numeric parameters and returns a numeric result. “hyp” is a local vari-
able and sqrt is a built-in function. You could test Hypotenuse by pasting it into the built-in Procedure
window and executing the following statement in the command line:
Print Hypotenuse(3, 4)

Now let’s look at a function that deals with text strings.
Function/S FirstStr(str1, str2)

String str1, str2

String result

if (CmpStr(str1,str2) < 0)
result = str1

else
result = str2

endif

return result
End

The FirstStr function takes two string parameters and returns the string that is first in alphabetical order. CmpStr
is a built-in function. You could test FirstStr by executing pasting it into the built-in Procedure window the
following statement in the command line:
Print FirstStr("ABC", "BCD")

Now a function that deals with waves.
Function CreateRatioOfWaves(w1, w2, nameOfOutputWave)

WAVE w1, w2
String nameOfOutputWave

Duplicate/O w1, $nameOfOutputWave
WAVE wOut = $nameOfOutputWave
wOut = w1 / w2

End

The CreateRatioOfWaves function takes two wave parameters and a string parameter. The string is the
name to use for a new wave, created by duplicating one of the input waves. The “WAVE wOut” statement
creates a wave reference for use in the following assignment statement. This function has no direct result
(no return statement) but has the side-effect of creating a new wave.

Chapter IV-3 — User-Defined Functions

IV-31

Here are some commands to test CreateRatioOfWaves:
Make test1 = {1, 2, 3}, test2 = {2, 3, 4}
CreateRatioOfWaves(test1, test2, "ratio")
Edit test1, test2, ratio

Function Syntax
The basic syntax of a function is:
Function <Name> (<Parameter list> [<Optional Parameters>]) [:<Subtype>]

<Parameter declarations>

<Local variable declarations>

<Body code>

<Return statement>
End

Here is an example:
Function Hypotenuse(side1, side2)

Variable side1, side2 // Parameter declaration

Variable hyp // Local variable declaration

hyp = sqrt(side1^2 + side2^2) // Body code

return hyp // Return statement
End

You could test this function from the command line using one of these commands:
Print Hypotenuse(3,4)
Variable/G result = Hypotenuse(3,4); Print result

As shown above, the function returns a real, numeric result. The Function keyword can be followed by a
flag that specifies a different result type.

The /D flag is obsolete because all calculations are now performed in double precision. However, it is still
permitted.

The Function Name
The names of functions must follow the standard Igor naming conventions. Names can consist of up to 31
characters. The first character must be alphabetic while the remaining characters can include alphabetic and
numeric characters and the underscore character. Names must not conflict with the names of other Igor
objects, functions or operations. Names in Igor are case insensitive.

Flag Return Value Type

/D Double precision number (obsolete)

/C Complex number

/S String

/WAVE Wave reference

/DF Data folder reference

Chapter IV-3 — User-Defined Functions

IV-32

The Procedure Subtype
You can identify procedures designed for specific purposes by using a subtype. Here is an example:
Function ButtonProc(ctrlName) : ButtonControl

String ctrlName

Beep
End

Here, “ : ButtonControl” identifies a function intended to be called when a user-defined button control
is clicked. Because of the subtype, this function is added to the menu of procedures that appears in the
Button Control dialog. When Igor automatically generates a procedure it generates the appropriate sub-
type. See Procedure Subtypes on page IV-193 for details.

The Parameter List and Parameter Declarations
The parameter list specifies the name for each input parameter. There is no limit on the number of parameters.

All parameters must be declared immediately after the function declaration. In Igor Pro 7 or later you can
use inline parameters, described below.

The parameter declaration declares the type of each parameter using one of these keywords:

int is 32 bits in IGOR32 and 64 bits in IGOR64.

double is a synonym for Variable and complex is a synonym for Variable/C.

WAVE/C tells the Igor compiler that the referenced wave is complex.

WAVE/T tells the Igor compiler that the referenced wave is text.

Variable and string parameters are usually passed to a subroutine by value but can also be passed by refer-
ence. For an explanation of these terms, see How Parameters Work on page IV-53.

Variable Numeric parameter

Variable/C Complex numeric parameter

String String parameter

Wave Wave reference parameter

Wave/C Complex wave reference parameter

Wave/T Text wave reference parameter

DFREF Data folder reference parameter

FUNCREF Function reference parameter

STRUCT Structure reference parameter

int Signed integer parameter- requires Igor7 or later

int64 Signed 64-bit integer parameter - requires Igor7 or later

uint64 Unsigned 32-bit integer parameter - requires Igor7 or later

double Numeric parameter - requires Igor7 or later

complex Complex numeric parameter - requires Igor7 or later

Chapter IV-3 — User-Defined Functions

IV-33

Integer Parameters
In Igor Pro 7 and later you can use these integer types for parameters and local variables in user-defined
functions:

int is a generic signed integer that you can use for wave indexing or general use. It provides a speed
improvement over Variable or double in most cases.

Signed int64 and unsigned uint64 are for special purposes where you need explicit access to bits. You
can also use them in structures.

Optional Parameters
Following the list of required function input parameters, you can also specify a list of optional input param-
eters by enclosing the parameter names in brackets. You can supply any number of optional parameter
values when calling the function by using the ParamName=Value syntax. Optional parameters may be of
any valid data type. There is no limit on the number of parameters.

All optional parameters must be declared immediately after the function declaration. As with all other vari-
ables, optional parameters are initialized to zero. You must use the ParamIsDefault function to determine
if a particular optional parameter was supplied in the function call.

See Using Optional Parameters on page IV-55 for an example.

Inline Parameters
In Igor Pro 7 and later you can declare user-defined functions parameters inline. This means that the param-
eter types and parameter names are declared in the same statement as the function name:

Function Example(Variable a, [Variable b, double c])
Print a,b,c

End

or, equivalently:

Function Example2(
Variable a,// The comma is optional
[

Variable b,
double c

]
)
Print a,b,c

End

int 32-bit integer in IGOR32; 64-bit integer in IGOR64

int64 64-bit signed integer

uint64 64-bit unsigned integer

Chapter IV-3 — User-Defined Functions

IV-34

Local Variable Declarations
The parameter declarations are followed by the local variable declarations if the procedure uses local vari-
ables. Local variables exist only during the execution of the procedure. They are declared using one of these
keywords:

double is a synonym for Variable and complex is a synonym for Variable/C.

Numeric and string local variables can optionally be initialized. For example:
Function Example(p1)

Variable p1

// Here are the local variables
Variable v1, v2
Variable v3=0
Variable/C cv1=cmplx(0,0)
String s1="test", s2="test2"

<Body code>
End

If you do not supply explicit initialization, Igor automatically initializes local numeric variables with the
value zero. Local string variables are initialized with a null value such that, if you try to use the string before
you store a value in it, Igor reports an error.

Initialization of other local variable types is discussed below. See Wave References on page IV-65, Data
Folder References on page IV-72, Function References on page IV-98, and Structures in Functions on page
IV-91.

The name of a local variable is allowed to conflict with other names in Igor, but they must be unique within
the function. If you create a local variable named “sin”, for example, then you will be unable to use Igor’s
built-in sin function within the function.

Variable Numeric variable

Variable/C Complex numeric variable

String String variable

NVAR Global numeric variable reference

NVAR/C Global complex numeric variable reference

SVAR Global variable reference

Wave Wave reference

Wave/C Complex wave reference

Wave/T Text wave reference

DFREF Data folder reference

FUNCREF Function reference

STRUCT Structure

int Signed integer - requires Igor7 or later

int64 Signed 64-bit integer - requires Igor7 or later

uint64 Unsigned 32-bit integer - requires Igor7 or later

double Numeric variable - requires Igor7 or later

complex Complex numeric variable - requires Igor7 or later

Chapter IV-3 — User-Defined Functions

IV-35

You can declare local variables anywhere in the function after the parameter declarations.

Body Code
This table shows what can appear in body code of a function.

Statements are limited to 1000 characters per line except for assignment statements which, in Igor Pro 7 or
later, can be continued on subsequent lines.

Line Continuation
In user-defined functions in Igor Pro 7 or later, you can use arbitrarily long expressions by including a line
continuation character at the very end of a line. The line continuation character is backslash. For example:

Function Example1(double v1)
return v1 + \
2

End

Line continuation is supported for any numeric or string expression in a user-defined function. Here is an
example using a string expression:

Function/S Example2(string s1)
return s1 + \

" " + \
"there"

End

Line continuation is supported for numeric and string expressions only. It is not supported on other types
of commands. For example, this generates a compile error:

Function Example3(double v1)
Make wave0 \

 wave1
End

The Return Statement
A return statement often appears at the end of a function, but it can appear anywhere in the function body.
You can also have more than one return statement.

The return statement immediately stops executing the function and returns a value to the calling function.
The type of the returned value must agree with the type declared in the function declaration.

If there is no return statement, or if a function ends without hitting a return statement, then the function
returns the value NaN (Not a Number) for numeric functions and null for other types of functions. If the
calling function attempts to use the null value, Igor reports an error.

What Allowed in Functions? Comment

Assignment statements Yes Includes wave, variable and string assignments.

Built-in operations Yes, with a few exceptions. See Operations in Functions on page IV-102 for
exceptions.

Calls to user functions Yes

Calls to macros No

External functions Yes

External operations Yes, with exceptions.

Chapter IV-3 — User-Defined Functions

IV-36

Expression Evaluation
An expression is a combination of literal values, variable references, wave references, function calls, paren-
theses and operators. Expressions appear on the right-hand side of assignment statements and as parame-
ters in commands. For example:

Variable v = ((123 + someVariable) * someWave[3]) / SomeFunction()

In most cases Igor evaluates expressions using double-precision floating point. However, if the destination
is an integer type, then Igor uses integer calculations.

Integer Expressions
Prior to Igor Pro 7, all calculations were performed in double-precision floating point. Double-precision can
represent integers of up to 53 bits precisely. Integers larger than 53 bits are represented approximately in
double-precision.

Igor Pro 7 and later can perform integer calculations instead of floating point. You trigger this by assigning
a value to a local variable declared using the integer types int, int64 and uint64. Calculations are done using
32 bits or 64 bits depending on the type of the integer.

When an integer type variable is the destination in an expression in a function, the right-hand side is com-
piled using integer math. This avoids the limitation of 53 bits for double precision and may also provide a
speed advantage. If you use a function such as sin that is inherently floating point, it is calculated as a
double and then converted to an integer. You should avoid using anything that causes a double-to-integer
conversion when the destination is a 64-bit integer.

This example shows various ways to use integer expressions:

Function Example()
int a = 0x101 // 0x introduces a hexadecimal literal number
int b = a<<2
int c = b & 0x400
printf "a=%x, b=%x, c=%x\r",a, b, c

End

This prints

a=101, b=404, c=400

To set bits in an integer, use the left-shift operator, <<. For example to set bit 60 in a 64-bit integer, use 1<<60.
This is the integer equivalent of 2^60, but you can not use ^ because exponentiation is not supported in
integer expressions.

To print all the bits in a 64-bit integer, use Printf with the %x or %d conversion specification. You can also
use a Print command as long as the compiler can clearly see the number is an integer from the first symbol.
For example:

Function Example()
int64 i = 1<<60 // 1152921504606846976 (decimal), 1000000000000000 (hex)
Printf "i = %0.16X\r", i
Printf "i = %d\r", i
Print "i =", i
Print "i =", 0+i // First symbol is not an integer variable or wave

End

This prints:

 i = 1000000000000000
 i = 1152921504606846976
 i = 1152921504606846976
 i = 1.15292e+18

Chapter IV-3 — User-Defined Functions

IV-37

Integer Expressions in Wave Assignment Statements
When compiling a wave assignment statement, the right-hand expression is compiled as 64-bit integer if
the compiler knows that the destination wave is 64-bit integer. Otherwise, the expression is compiled as
double. For example:

Function ExpressionCompiledAsInt64()
Make/O/N=1/L w64
w64 = 0x7FFFFFFFFFFFFFFF
Print w64[0]

End

0x7FFFFFFFFFFFFFFF is the largest signed 64-bit integer value expressed in hexadecimal. It can not be pre-
cisely represented in double precision.

Here the /L flag tells Igor that the wave is signed 64-bit integer. This causes the compiler to compile the
right-hand expression using signed 64-bit signed operations. The correct value is assigned to the wave and
the correct value is printed.

In the next example, the compiler does not know that the wave is signed 64-bit integer because the /L flag
was not used. Consequently the right-hand expression is compiled using double-precision operations.
Because 0x7FFFFFFFFFFFFFFF can not be precisely represented in double precision, the value assigned to
the wave is incorrect, as is the printed value:

Function ExpressionCompiledAsDouble()
Make/O/N=1/Y=(0x80) w64 // Wave is int64 but Igor does not know it
w64 = 0x7FFFFFFFFFFFFFFF // Expression compiled as double
Print w64[0]

End

You can use the /L flag in a wave declaration. For example:
Function ExpressionCompiledAsInt64()

Make/O/N=1Y=(0x80) w64 // Wave is int64 but Igor does not know it
Wave/L w = w64 // Igor knows that w refers to int64 wave
w = 0x7FFFFFFFFFFFFFFF // Expression compiled as int64
Print w[0]

End

This tells Igor that the wave reference by w is signed 64-bit integer, causing the compiler to use signed 64-
bit integer to compile the right-hand expression.

If the wave was unsigned 64-bit, we would need to use Wave/L/U.

In summary, to assign values to a 64-bit integer wave, make sure to use the correct flags so that Igor will
compile the right-hand expression using 64-bit integer operations.

To view the contents of an integer wave, especially a 64-bit integer wave, display it in a table using an
integer column format or print individual elements on the command line. Print on an entire wave is not yet
integer-aware and uses doubles.

Conditional Statements in Functions
Igor Pro supports two basic forms of conditional statements: if-else-endif and if-elseif-endif statements. Igor
also supports multiway branching with switch and strswitch statements.

If-Else-Endif
The form of the if-else-endif structure is
if (<expression>)

<true part>
else

Chapter IV-3 — User-Defined Functions

IV-38

<false part>
endif

<expression> is a numeric expression that is considered true if it evaluates to any nonzero number and false
if it evaluates to zero. The true part and the false part may consist of any number of lines. If the expression eval-
uates to true, only the true part is executed and the false part is skipped. If the expression evaluates to false, only
the false part is executed and the true part is skipped. After the true part or false part code is executed, execution
continues with any code immediately following the if-else-endif statement.

The keyword “else” and the false part may be omitted to give a simple conditional:
if (<expression>)

<true part>
endif

Because Igor is line-oriented, you may not put the if, else and endif keywords all on the same line. They
must each be in separate lines with no other code.

If-Elseif-Endif
The if-elseif-endif statement provides a means for creating nested if structures. It has the form:
if (<expression1>)

<true part 1>
elseif (<expression2>)

<true part 2>
[else

<false part>]
endif

These statements follow similar rules as for if-else-endif statements. When any expression evaluates as true
(nonzero), the code immediately following the expression is executed. If all expressions evaluate as false
(zero) and there is an else clause, then the statements following the else keyword are executed. Once any
code in a true part or the false part is executed, execution continues with any code immediately following
the if-elseif-endif statement.

Comparisons
The relational comparison operators are used in numeric conditional expressions.

These operators return 1 for true and 0 for false.

The comparison operators work with numeric operands only. To do comparisons with string operands, use
the cmpstr function.

Comparison operators are usually used in conditional structures but can also be used in arithmetic expres-
sions. For example:
wave0 = wave0 * (wave0 < 0)

This clips all positive values in wave0 to zero.

See also Example: Comparison Operators and Wave Synthesis on page II-74.

Symbol Meaning Symbol Meaning

== equal <= less than or equal

!= not-equal > greater than

< less than >= greater than or equal

Chapter IV-3 — User-Defined Functions

IV-39

Operators in Functions
This section discusses operators in the context of user-defined functions. See Operators on page IV-5 for a
discussion of operators used in the command line and macros as well as functions.

Bitwise and Logical Operators
The bitwise and logical operators are also used in conditional expressions.

The precedence of operators is shown in the table under Operators on page IV-5. In the absence of parentheses,
an operator with higher precedence (higher in the table) is executed before an operator with lower precedence.

Because the precedence of the arithmetic operators is higher than the precedence of the comparison opera-
tors, you can write the following without parentheses:
if (a+b != c+d)

Print "a+b is not equal to c+d"
endif

Because the precedence of the comparison operators is higher than the precedence of the logical OR opera-
tor, you can write the following without parentheses:
if (a==b || c==d)

Print "Either a equals b or c equals d"
endif

The same is true of the logical AND operator, &&.

For operators with the same precedence, there is no guaranteed order of execution and you must use paren-
theses to be sure of what will be executed. For example:
if ((a&b) != (c&d))

Print "a ANDED with b is not equal to c ANDED with d"
endif

See Operators on page IV-5 for more discussion of operators.

Using Bitwise Operators
The bitwise operators are used to test, set, and clear bits. This makes sense only when you are dealing with
integer operands.

Symbol Meaning

~ Bitwise complement

& Bitwise AND

| Bitwise OR

! Logical NOT

&& Logical AND

|| Logical OR

<< Shift left (requires Igor7 or later)

>> Shift right (requires Igor7 or later)

Bit Action Operation

Test AND operator (&)

Set OR operator (|)

Clear Bitwise complement operator (~) followed by the bitwise AND operator (&)

Chapter IV-3 — User-Defined Functions

IV-40

This function illustrates various bit manipulation techniques.

Function DemoBitManipulation(vIn)
Variable vIn

vIn = trunc(vIn) // Makes sense with integers only
Printf "Original value: %d\r", vIn

Variable vOut

if ((vIn & 2^3) != 0) // Test if bit 3 is set
Print "Bit 3 is set"

else
Print "Bit 3 is cleared"

endif

vOut = vIn | (2^3) // Set bit 3
Printf "Set bit 3: %d\r", vOut

vOut = vIn & ~(2^3) // Clear bit 3
Printf "Clear bit 3: %d\r", vOut

vOut = vIn << 3 // Shift three bits left
Printf "Shift three bits left: %d\r", vOut

vOut = vIn >> 3 // Shift three bits right
Printf "Shift three bits right: %d\r", vOut

End

For a simple demonstration, try this function passing 1 as the parameter.

Bit Shift Operators
Igor Pro 7 and later support the bit shift operators << and >>. a<<n shifts the bits of the integer a left by n
bits. a>>n shifts the bits of the integer a right by n bits.

Normally you should apply bit shift operators to integer values. If you apply a bit shift operator to a floating
point value, any fractional part is truncated.

Increment and Decrement Operators
In Igor7 and later, in a user-defined function, you can use these operators on local variables:

var must be a real local variable.

The pre-increment functions increment the variable and then return its new value. In this example, a is ini-
tialized to 0. ++a then increments a to 1 and returns the new value. Consequently 1 is stored in b.

Shift left << operator (requires Igor7 or later)

Shift right >> operator (requires Igor7 or later)

++var Pre-increment

var++ Post-increment

--var Pre-decrement

var-- Post-decrement

Bit Action Operation

Chapter IV-3 — User-Defined Functions

IV-41

Function PreIncrementDemo()
int a = 0
int b = ++a

End

The post-increment functions return the variable's original value and then increment it. In this example, a
is initialized to 0. a++ returns the original value, 0, and then increments a to 1. Consequently 0 is stored in b.

Function PostIncrementDemo()
int a = 0
int b = a++

End

The pre-decrement and post-decrement work the same but decrement the variable rather than increment-
ing it.

Switch Statements
The switch construct can sometimes be used to simplify complicated flow control. It chooses one of several
execution paths depending on a particular value.

Instead of a single form of switch statement, as is the case in C, Igor has two types: switch for numeric
expressions and strswitch for string expressions. The basic syntax of these switch statements is as fol-
lows:
switch(<numeric expression>) // numeric switch

case <literal number or numeric constant>:
<code>
[break]

case <literal number or numeric constant>:
<code>
[break]

. . .
[default:

<code>]
endswitch

strswitch(<string expression>) // string switch
case <literal string or string constant>:

<code>
[break]

case <literal string or string constant>:
<code>
[break]

. . .
[default:

<code>]
endswitch

The switch numeric or string expression is evaluated and execution proceeds with the code following the
matching case label. When none of the case labels match, execution continues at the default label, if it is
present, or otherwise the switch exits with no action taken.

All of the case labels must be numeric or string constant expressions and they must all have unique values
within the switch statement. The constant expressions can either be literal values or they must be declared
using the Constant and StrConstant keywords for numeric and string switches respectively.

Execution proceeds within each case until a break statement is encountered or the endswitch is reached. The
break statement explicitly exits the switch construct. Usually, you should put a break statement at the end
of each case. If you omit the break statement, execution continues with the next case label. Do this when you
want to execute a single action for more than one switch value.

Chapter IV-3 — User-Defined Functions

IV-42

The following examples illustrate how switch constructs can be used in Igor:
Constant kThree=3
StrConstant ksHow="how"

Function NumericSwitch(a)
Variable a

switch(a) // numeric switch
case 1:

print "a is 1"
break

case 2:
print "a is 2"
break

case kThree:
case 4:

print "a is 3 or 4"
break

default:
print "a is none of those"
break

endswitch
End

Function StringSwitch(a)
String a

strswitch(a) // string switch
case "hello":

print "a is hello"
break

case ksHow:
print "a is how"
break

case "are":
case "you":

print "a is are or you"
break

default:
print "a is none of those"
break

endswitch
End

Loops
Igor implements two basic types of looping structures: do-while and for loops.

The do-while loop iterates through the loop code and tests an exit condition at the end of each iteration.

The for loop is more complex. The beginning of a for loop includes expressions for initializing and updating
variables as well as testing the loop’s exit condition at the start of each iteration.

Do-While Loop
The form of the do-while loop structure is:
do

<loop body>
while(<expression>)

This loop runs until the expression evaluates to zero or until a break statement is executed.

Chapter IV-3 — User-Defined Functions

IV-43

This example will always execute the body of the loop at least once, like the do-while loop in C.
Function Test(lim)

Variable lim // We use this parameter as the loop limit.

Variable sum=0
Variable i=0 // We use i as the loop variable.
do

sum += i // This is the body; equivalent to sum=sum+i.
i += 1 // Increment the loop variable.

while(i < lim)
return sum

End

Nested Do-While Loops
A nested loop is a loop within a loop. Here is an example:
Function NestedLoopTest(numOuterLoops, numInnerLoops)

Variable numOuterLoops, numInnerLoops

Variable i, j

i = 0
do

j = 0
do

<inner loop body>
j += 1

while (j < numInnerLoops)
i += 1

while (i < numOuterLoops)
End

While Loop
This fragment will execute the body of the loop zero or more times, like the while loop in C.
do

if (i > lim)
break // This breaks out of the loop.

endif
<loop body>
i += 1

while(1) // This would loop forever without the break.
... // Execution continues here after the break.

In this example, the loop increment is 1 but it can be any value.

For Loop
The basic syntax of a for loop is:
for(<initialize loop variable>; <continuation test>; <update loop variable>)

<loop body>
endfor

Here is a simple example:
Function Example1()

Variable i

for(i=0; i<5; i+=1)
print i

endfor
End

Chapter IV-3 — User-Defined Functions

IV-44

The beginning of a for loop consists of three semicolon-separated expressions. The first is usually an assign-
ment statement that initializes one or more variables. The second is a conditional expression used to deter-
mine if the loop should be terminated — if true, nonzero, the loop is executed; if false, zero, the loop
terminates. The third expression usually updates one or more loop variables.

When a for loop executes, the initialization expression is evaluated only once at the beginning. Then, for each
iteration of the loop, the continuation test is evaluated at the start of every iteration, terminating the loop if
needed. The third expression is evaluated at the end of the iteration and usually increments the loop variable.

All three expressions in a for statement are optional and can be omitted independent of the others; only the
two semicolons are required. The expressions can consist of multiple assignments, which must be separated
by commas.

In addition to the continuation test expression, for loops may also be terminated by break or return state-
ments within the body of the loop.

A continue statement executed within the loop skips the remaining body code and execution continues
with the loop’s update expression.

Here is a more complex example:
Function Example2()

Variable i,j

for(i=0,j=10; ;i+=1,j*=2)
if (i == 2)

continue
endif
Print i,j
if (i == 5)

break
endif

endfor
End

Break Statement
A break statement terminates execution of do-while loops, for loops, and switch statements. The break
statement continues execution with the statement after the enclosing loop’s while, endfor, or endswitch
statement. A nested do-while loop example demonstrates this:

…
Variable i=0, j

do // Starts outer loop.
if (i > numOuterLoops)

break // Break #1, exits from outer loop.
endif
j = 0
do // Start inner loop.

if (j > numInnerLoops)
break // Break #2, exits from inner loop only.

endif
j += 1

while (1) // Ends inner loop.
… // Execution continues here from break #2.
i += 1

while (1) // Ends outer loop.
… // Execution continues here from break #1.

Chapter IV-3 — User-Defined Functions

IV-45

Continue Statement
The continue statement can be used in do-while and for loops to short-circuit the loop and return execution
back to the top of the loop. When Igor encounters a continue statement during execution, none of the code
following the continue statement is executed during that iteration.

Flow Control for Aborts
Igor Pro includes a specialized flow control construct and keywords that you can use to test for and respond
to abort conditions. The AbortOnRTE and AbortOnValue keywords can be used to trigger aborts, and the
try-catch-endtry construct can be used to control program execution when an abort occurs. You can also
trigger an abort by pressing the User Abort Key Combinations or by clicking the Abort button in the status
bar.

These are advanced techniques. If you are just starting with Igor programming, you may want to skip this
section and come back to it later.

AbortOnRTE Keyword
The AbortOnRTE (abort on runtime error) keyword can be used to raise an abort whenever a runtime error
occurs. Use AbortOnRTE immediately after a command or sequence of commands for which you wish to
catch a runtime error.

See AbortOnRTE on page V-18 for further details. For a usage example see Simple try-catch-endtry
Example on page IV-46.

AbortOnValue Keyword
The AbortOnValue keyword can be used to abort function execution when a specified abort condition is
satisfied. When AbortOnValue triggers an abort, it can also return a numeric abort code that you can use to
characterize the cause.

See AbortOnValue on page V-19 for further details. For a usage example see Simple try-catch-endtry
Example on page IV-46.

try-catch-endtry Flow Control
The try-catch-endtry flow control construct has the following syntax:
try

<code>
catch

<code to handle abort>
endtry

The try-catch-endtry flow control construct can be used to catch and respond to abnormal conditions in user
functions. Code within the try and catch keywords tests for abnormal conditions and calls Abort, AbortOn-
RTE or AbortOnValue if appropriate. An abort also occurs if the user clicks the Abort button in the
command window or presses the User Abort Key Combinations.

When an abort occurs, execution immediately jumps to the first statement after the catch keyword. This
catch code handles the abnormal condition, and execution then falls through to the first statement after
endtry.

If no abort occurs, then the code between catch and endtry is skipped, and execution then falls through to
the first statement after endtry.

When an abort occurs within the try-catch area, Igor stores a numeric code in the V_AbortCode variable.
The catch code can use V_AbortCode to determine what caused the abort.

See try-catch-endtry on page V-907 for further details.

Chapter IV-3 — User-Defined Functions

IV-46

Simple try-catch-endtry Example
We start with a simple example that illustrates the most common try-catch use. It catches and handles a
runtime error.
Function DemoTryCatch0(name)

String name // Name to use for a new wave

try
Make $name // Generates error if name is illegal or in use
AbortOnRTE // Abort if an error occurred

// This code executes if no error occurred
Printf "The wave '%s' was successfully created\r", name

catch
// This code executes if an error occurred in the try block
Variable err = GetRTError(1) // Get error code and clear error
String errMessage = GetErrMessage(err)
Printf "While executing Make, the following error occurred: %s\r", errMessage

endtry
End

Copy the code to the Procedure window of a new experiment and then execute:

DemoTryCatch0("wave0")

Since wave0 does not exist in a new experiment, DemoTryCatch0 creates it.

Now execute the same command again. This time the call to Make generates a runtime error because wave0
already exists. The call to AbortOnRTE generates an abort, because of the error generated by Make. The
abort causes the catch code to run. It reports the error to the user and clears it to allow execution to continue.

Without the clearing of the runtime error, via the GetRTError call, the error would cause procedure execu-
tion to halt and Igor would report the error to the user via an error dialog.

Complex try-catch-endtry Example
The following example demonstrates how aborting flow control works. Copy the code to the Procedure
window and execute the DemoTryCatch1 function with 0 to 6 as input parameters. When you execute
DemoTryCatch1(6), the function loops until you click the Abort button in the bottom/right corner of the
command window.
Function DemoTryCatch1(a)

Variable a

Print "A"
try

Print "B1"
AbortOnValue a==1 || a==2,33
Print "B2"
DemoTryCatch2(a)
Print "B3"
try

Print "C1"
if(a==4 || a==5)

Make $""; AbortOnRTE
endif
Print "C2"

catch
Print "D1"
// will be runtime error so pass along to outer catch
AbortOnValue a==5, V_AbortCode
Print "D2"

endtry

Chapter IV-3 — User-Defined Functions

IV-47

Print "B4"
if(a==6)

do
while(1)

endif
Print "B5"

catch
Print "Abort code= ", V_AbortCode
if(V_AbortCode == -4)

Print "Runtime error= ", GetRTError(1)
endif
if(a==1)

Abort "Aborting again"
endif
Print "E"

endtry
Print "F"

End

Function DemoTryCatch2(b)
Variable b

Print "DemoTryCatch2 A"
AbortOnValue b==3,99
Print "DemoTryCatch2 B"

End

User Abort Key Combinations
You can abort procedure execution by clicking the Abort button in the status bar or by pressing the follow-
ing user abort key combinations:

Constants
You can define named numeric and string constants in Igor procedure files and use them in the body of
user-defined functions.

Constants are defined in procedure files using following syntax:
Constant <name1> = <literal number> [, <name2> = <literal number>]
StrConstant <name1> = <literal string> [, <name2> = <literal string>]

For example:
Constant kIgorStartYear=1989, kIgorEndYear=2099
StrConstant ksPlatformMac="Macintosh", ksPlatformWin="Windows"

Function Test1()
Variable v1 = kIgorStartYear
String s1 = ksPlatformMac
Print v1, s1

End

We suggest that you use the “k” prefix for numeric constants and the “ks” prefix for string constants. This
makes it immediately clear that a particular keyword is a constant.

Command-dot Macintosh only

Ctrl+Break Windows only

Shift+Escape All platforms

Chapter IV-3 — User-Defined Functions

IV-48

Constants declared like this are public and can be used in any function in any procedure file. A typical use
would be to define constants in a utility procedure file that could be used from other procedure files as
parameters to the utility routines. Be sure to use precise names to avoid conflicts with public constants
declared in other procedure files.
If you are defining constants for use in a single procedure file, for example to improve readability or make
the procedures more maintainable, you should use the static keyword (see Static on page V-775 for
details) to limit the scope to the given procedure file.
static Constant kStart=1989, kEnd=2099
static StrConstant ksMac="Macintosh", ksWin="Windows"

Names for numeric and string constants are allowed to conflict with all other names. Duplicate constants
of a given type are not allowed, except for static constants in different files and when used with the override
keyword. The only true conflict is with variable names and with certain built-in functions that do not take
parameters such as pi. Variable names, including local variable names, waves, NVARs, and SVARs, over-
ride constants, but constants override functions such as pi.

Pragmas
A pragma is a statement in a procedure file that sets a compiler mode or passes other information from the
programmer to Igor. The form of a pragma statement is:
#pragma keyword [= parameter]

The pragma statement must be flush against the left margin of the procedure window, with no indentation.

Igor ignores unknown pragmas such as pragmas introduced in later versions of the program.
Currently, Igor supports the following pragmas:
#pragma rtGlobals = value
#pragma version = versionNumber
#pragma IgorVersion = versionNumber
#pragma hide = value
#pragma ModuleName = name
#pragma IndependentModule = name
#pragma TextEncoding = textEncodingNameStr

The effect of a pragma statement lasts until the end of the procedure file that contains it.

The rtGlobals Pragma
The rtGlobals pragma controls aspects of the Igor compiler and runtime error checking in user-defined
functions.

Prior to Igor Pro 3, to access a global (wave or variable) from a user-defined function, the global had to
already exist. Igor Pro 3 introduced "runtime lookup of globals" under which the Igor compiler did not
require globals to exist at compile time but rather connected references, declared with WAVE, NVAR and
SVAR statements, to globals at runtime. Igor Pro 6.20 introduced stricter compilation of wave references
and runtime checking of wave index bounds.

You enable and disable these behaviors using an rtGlobals pragma. For example:

#pragma rtGlobals = 3 // Strict wave reference mode, runtime bounds checking

A given rtGlobals pragma governs just the procedure file in which it appears. The pragma must be flush
left in the procedure file and is typically put at the top of the file.

Chapter IV-3 — User-Defined Functions

IV-49

The rtGlobals pragma is defined as follows:

rtGlobals=3 is recommended.

Under strict wave references (rtGlobals=3), you must create a wave reference for any use of a wave. Without
strict wave references (rtGlobals=1), you do not need to create a wave reference unless the wave is used in
an assignment statement. For example:

Function Test()
jack = 0 // Error under rtGlobals=1 and under rtGlobals=3
Display jack // OK under rtGlobals=1, error under rtGlobals=3

Wave jack // jack is now a wave reference rather than a bare name
Display jack // OK under rtGlobals=1 and under rtGlobals=3

End

Even with rtGlobals=3, this compiles without error:

Function Test()
// Make creates an automatic wave reference when used with a simple name
Make jack
Display jack // OK under rtGlobals=1 and rtGlobals=3

End

See Automatic Creation of WAVE References on page IV-66 for details.

Under runtime wave index checking (rtGlobals=3), Igor reports an error if a wave index is out-of-bounds:

Function Test()
Make/O/N=5 jack = 0 // Creates automatic wave reference

jack[4] = 123 // OK
jack[5] = 234 // Runtime error under rtGlobals=3.

// Clipped under rtGlobals=1.

Variable index = 5
jack[index] = 234 // Runtime error under rtGlobals=3.

// Clipped under rtGlobals=1.

// Create and use a dimension label for point 4 of jack
SetDimLabel 0,4,four,jack
jack[%four] = 234 // OK

// Use a non-existent dimension label.
jack[%three] = 345 // Runtime error under rtGlobals=3.

// Clipped under rtGlobals=1.
// Under rtGlobals=1, this statement writes to point 0 of jack.

End

#pragma rtGlobals=0 Specifies the old, pre-Igor Pro 3 behavior.

This is no longer supported and acts like rtGlobals=1.

#pragma rtGlobals=1 Turns on runtime lookup of globals.

This is the default setting if there is no rtGlobals pragma in a given procedure
file.

#pragma rtGlobals=2 Forces old experiments out of compatibility mode. This is superceded by
rtGlobals=3. It is described under Legacy Code Issues on page IV-104.

#pragma rtGlobals=3 Turns on runtime lookup of globals, strict wave references and runtime checking
of wave index bounds. Requires Igor Pro 6.2 or later.

Chapter IV-3 — User-Defined Functions

IV-50

See also: Runtime Lookup of Globals on page IV-60
Automatic Creation of WAVE References on page IV-66
Automatic Creation of WAVE, NVAR and SVAR References on page IV-65
Legacy Code Issues on page IV-104

The version Pragma
The version pragma sets the version of the procedure file. It is optional and is of interest mostly if you are
the developer of a package used by a widespread group of users.

For details on the version pragma, see Procedure File Version Information on page IV-155.

The IgorVersion Pragma
The IgorVersion pragma is also optional and of interest to developers of packages. It gives you a way to
prevent procedures from compiling under versions of Igor Pro older than the specified version number.

For example, the statement:
#pragma IgorVersion = 7.00

tells Igor that the procedure file requires Igor Pro 7.00 or later.

The hide Pragma
The hide pragma allows you to make a procedure file invisible.

For details on the hide pragma, see Invisible Procedure Files on page III-355.

The ModuleName Pragma
The ModuleName pragma gives you the ability to use static functions and proc pictures in a global context, such
as in the action procedure of a control or on the command line. Using this pragma entails a two step process:
define a name for the procedure file, and then use a special syntax to access objects in the named procedure file.

To define a module name for a procedure file use the format:
#pragma ModuleName = name

This statement associates the specified module name with the procedure file in which the statement
appears.

You can then use objects from the named procedure file by preceding the object name with the name of the
module and the # character. For example:

#pragma ModuleName = MyModule

Static Function Test(a)
Variable a

return a+100
End

Then, on the command line or from another procedure file, you can execute:
Print MyModule#Test(3)

Choose a distinctive module name so that it does not clash with module names used by other programmers.
WaveMetrics uses module names with a WM_ prefix, so you must not use such names.

For further discussion see Regular Modules on page IV-222.

Chapter IV-3 — User-Defined Functions

IV-51

The IndependentModule Pragma
The IndependentModule pragma is a way for you to designate groups of one or more procedure files to be
compiled and linked separately. Once compiled and linked, the code remains in place and is usable even
though other procedures may fail to compile. This allows your control panels, menus, and procedures to
continue to work regardless of user programming errors.

A file is designated as an independent module using
#pragma IndependentModule=imName

This is similar to #pragma ModuleName=modName (see The ModuleName Pragma on page IV-50) and, just
as in the case of calling static functions in a procedure with #pragma ModuleName, calling nonstatic function
in an IndependentModule from outside the module requires the use of imName#functionName() syntax.

To call any function, static or not, defined in an independent module from outside that module, you must
qualify the call with the independent module name:

MyIndependentModule#Test()

For further discussion see Independent Modules on page IV-224.

The rtFunctionErrors Pragma
Normally, when an error occurs in a built-in function, the built-in function does not post an error but rather
returns 0, NaN, or an empty string as the function result. For example, by default, the Sum built-in function
in this user-defined function returns 0 but does not post an error:

Function Test()
Make/T/FREE textWave = ""
Variable val = Sum(textWave) // Error: Expected numeric wave
Print val

End

As a debugging aid, you can force Igor to post an error that occurs in a built-in function called from a user-
defined function by adding this statement to the procedure file:

#pragma rtFunctionErrors = 1

Now, if you run the Test function, Igor displays an error dialog telling you that the Sum function expects a
numeric wave.

The rtFunctionErrors pragma works for most errors in built-in functions called from user-defined func-
tions, but not in all.

The rtFunctionErrors pragma was added in Igor Pro 7.00. Earlier versions of Igor ignore it.

The TextEncoding Pragma
The TextEncoding pragma provides a way for a programmer to mark an Igor procedure file as using a par-
ticular text encoding. This pragma was added in Igor Pro 7.00 and is ignored by earlier versions.

Here is an example:

#pragma TextEncoding = "Windows-1252"

This pragma tells Igor7 that the procedure file is encoded using Windows-1252, also known as "Windows
Latin 1" or "Western". This is the text encoding used by Igor Pro 6 and before on Windows English and
Western European systems.

Like all pragmas, the TextEncoding pragma must be flush against the left margin of the procedure file. It is
an error to have more than one TextEncoding pragma in a given procedure file. The TextEncoding pragma
can appear anywhere in the file and affects the whole file. By convention it is placed near the top of the file.

Chapter IV-3 — User-Defined Functions

IV-52

If your procedure file uses only ASCII characters then all versions of Igor on all platforms will interpret it
correctly and there is no need for a TextEncoding pragma.

If your procedure file uses non-ASCII characters then we recommend that you add a TextEncoding pragma
as this will allow Igor7 to reliably interpret it regardless of the user's operating system, system locale and
default text encoding setting.

If the procedure file is to be used in Igor7 and later only then you should use the UTF-8 text encoding. This
allows you to use any Unicode character in the file.

If the procedure file is to be used in both Igor6 and Igor7 and later, you should not use UTF-8 because Igor6
does not support it. If you primarily work on Macintosh in a Western language, use "MacRoman". If you
primarily work on Windows in a Western language, use "Windows-1252". If you work in Japanese, use "Jap-
anese".

The following text encodings are not supported for procedure files:

UTF-16LE, UTF-16BE, UTF32-LE, UTF32-BE

If you attempt to use these in a procedure file Igor will report an error.

To understand the utility of the TextEncoding pragma, consider this scenario. You are an Igor programmer
who has created a package of procedures that is used by many users around the world. Your procedures
contain some non-ASCII characters such as Greek letters. Some of your users are using Igor6 and some are
using Igor7. You do not want to maintain separate code for each version of Igor. This means that your pro-
cedure files must use an Igor6-compatible text encoding which excludes UTF-8.

When Igor7 opens a procedure file it must convert it from the text encoding used to store the file to UTF-8.
To do this it must determine the text encoding used by the file. As noted under Plain Text Text Encoding
Conversion Errors on page III-419, for plain text files this is tricky. Without a TextEncoding pragma and
lacking any other means to determine it, Igor7 would determine the file's text encoding using the user's
default text encoding setting. This would inevitably be wrong for some users.

The TextEncoding pragma solves this problem by allowing you to explicitly mark a procedure file as using
a particular text encoding.

In the example above you would choose Windows-1252 if you edit your procedure files on a Windows
western system. If you edit them on a Macintosh western system, you would use "Macintosh" (also called
"MacRoman"). If you edit them on a Japanese system, you would use "Shift JIS". These are the text encod-
ings used by Igor6 on the respective systems. With the right TextEncoding pragma, you can reliably edit
and run your procedures in Igor6 or Igor7.

In Igor7, Igor automatically adds a TextEncoding pragma under some circumstances.

It adds a TextEncoding pragma if you set the text encoding of a procedure file by clicking the Text Encoding
button at the bottom of the window or by choosing Procedure->Text Encoding.

It adds a TextEncoding pragma if it displays the Choose Text Encoding dialog when you open a procedure
file because it is unable to convert the text to UTF-8 without your help.

It is possible for the TextEncoding pragma to be in conflict with the text encoding used to open the file. For
example, imagine that you open a file containing

#pragma TextEncoding = "Windows-1252"

and then you change "Windows-1252" to "UTF-8" by editing the file. You have now created a conflict where
the text encoding used to open the file was one thing but the TextEncoding pragma is another. To resolve
this conflict, Igor displays the Resolve Text Encoding Conflict dialog. In the dialog you can choose to make
the file's text encoding match the TextEncoding pragma or to make the TextEncoding pragma match the
file's text encoding. You can also cancel the dialog and manually edit the TextEncoding pragma.

For background information, see Text Encodings on page III-409.

Chapter IV-3 — User-Defined Functions

IV-53

Unknown Pragmas
Igor ignores pragmas that it does not know about. This allows newer versions of Igor to use new pragmas
while older versions ignore them. The downside of this change is that, if you misspell a pragma keyword,
Igor will not warn you about it.

Proc Pictures
Proc pictures are binary PNG or JPEG images encoded as printable ASCII text in procedure files. They are
intended for programmers who need images as part of the user interface for a procedure package. They can
be used with the DrawPICT operation and with the picture keyword of the Button, CheckBox, and Cus-
tomControl operations.

The syntax for defining and using a proc picture is illustrated in the following example:
// PNG: width= 56, height= 44
static Picture myPictName

ASCII85Begin
M,6r;%14!\!!!!.8Ou6I!!!!Y!!!!M#Qau+!5G;q_uKc;&TgHDFAm*iFE_/6AH5;7DfQssEc39jTBQ
=U!7FG,5u`*!m?g0PK.mR"U!k63rtBW)]$T)Q*!=Sa1TCDV*V+l:Lh^NW!fu1>;(.<VU1bs4L8&@Q_
<4e(%"^F50:Jg6);j!CQdUA[dh6]%[OkHSC,ht+Q7ZO#.6U,IgfSZ!R1g':oO_iLF.GQ@RF[/*G98D
bjE.g?NCte(pX-($m^_FhhfL`D9uO6Qi5c[r4849Fc7+*)*O[tY(6<rkm^)/KLIc]VdDEbF-n5&Am
2^hbTu:U#8ies_W<LGkp_LEU1bs4L8&?fqRJ[h#sVSSz8OZBBY!QNJ
ASCII85End

End

Function Demo()
NewPanel
DrawPict 0,0,1,1,ProcGlobal#myPictName

End

The ASCII text in the myPictName procedure between the ASCII85Begin and ASCII85End is similar to
output from the Unix btoa command, but with the header and trailer removed.

You can create proc pictures in Igor Pro from normal, global pictures using the Pictures dialog (Misc menu)
which shows the experiment’s picture gallery. Select a picture in the dialog and click the Copy Proc Picture
button to place the text on the dlipboard. Then paste it in your procedure file. If the existing picture is not a JPEG
or PNG, it is converted to PNG.

Proc pictures can be either global or local in scope. Global pictures can be used in all procedure files. Local
pictures can be used only within the procedure file in which they are defined. Proc pictures are global by
default and the picture name must be unique for all open procedure files. Proc pictures are local if they are
declared static.

When you reference a proc picture in a DrawPICT command, the picture name must be qualified using the
ProcGlobal keyword or the procedure file module name. This prevents conflicts with global pictures in the
experiment’s picture gallery.

For a global proc picture, you must use the ProcGlobal keyword as the prefix:
ProcGlobal#gProcPictName

For a static proc picture, you must use the module name defined in the procedure file by the #pragma
ModuleName = modName statement (see ModuleName on page V-553) as the prefix:
modName#ProcPictName

How Parameters Work
There are two ways of passing parameters from a routine to a subroutine:
• Pass-by-value

• Pass-by-reference

Chapter IV-3 — User-Defined Functions

IV-54

“Pass-by-value” means that the routine passes the value of an expression to the subroutine. “Pass-by-refer-
ence” means that the routine passes access to a variable to the subroutine. The important difference is that, in
pass-by-reference, the subroutine can change the original variable in the calling routine.

Like C++, Igor allows either method for numeric and string variables. You should use pass-by-value in most
cases and reserve pass-by-reference for those situations in which you need multiple return values.

Example of Pass-By-Value
Function Routine()

Variable v = 4321
String s = "Hello"

Subroutine(v, s)
End

Function Subroutine(v, s)
Variable v
String s

Print v, s

// These lines have NO EFFECT on the calling routine.
v = 1234
s = "Goodbye"

End

Note that v and s are local variables in Routine. In Subroutine, they are parameters which act very much like
local variables. The names “v” and “s” are local to the respective functions. The v in Subroutine is not the
same variable as the v in Routine although it initially has the same value.

The last two lines of Subroutine set the value of the local variables v and s. They have no effect on the value
of the variables v and s in the calling Routine. What is passed to Subroutine is the numeric value 4321 and
the string value “Hello”.

Pass-By-Reference
You can specify that a parameter to a function is to be passed by reference rather than by value. In this way,
the function called can change the value of the parameter and update it in the calling function. This is much
like using pointers to arguments in C++. This technique is needed and appropriate only when you need to
return more than one value from a function.

Functions with pass-by-reference parameters can only be called from other functions — not from the
command line.

Only numeric variables (declared by variable, double, int, int64, uint64 or complex), string variables, and
structures can be passed by reference. Structures are always passed by reference.

The variable or string being passed must be a local variable and can not be a global variable. To designate
a variable or string parameter for pass-by-reference, simply prepend an ampersand symbol before the name
in the parameter declaration:
Function Subroutine(num1,num2,str1)

Variable &num1, num2
String &str1

num1= 12+num2
str1= "The number is"

End

and then call the function with the name of a local variable in the reference slot:

Chapter IV-3 — User-Defined Functions

IV-55

Function Routine()
Variable num= 1000
String str= "hello"
Subroutine(num,2,str)
Print str, num

End

When executed, Routine prints “The number is 14” rather than “hello 1000”, which would be the case if
pass-by-reference were not used.

A pass-by-reference parameter can be passed to another function that expects a reference:
Function SubSubroutine(b)

Variable &b
b= 123

End

Function Subroutine(a)
Variable &a
SubSubroutine(a)

End

Function Routine()
Variable num
Subroutine(num)
print num

End

You can not pass wave references, NVARs, SVARS, DFREFs or FUNCREFs by reference to a function. You
can use a structure containing fields of these types to achieve the same end.

How Waves Are Passed
Here is an example of a function “passing a wave” to a subroutine.
Function Routine()

Make/O wave0 = x
Subroutine(wave0)

End

Function Subroutine(w)
WAVE w

w = 1234 // This line DOES AFFECT the wave referred to by w.
End

We are really not passing a wave to Subroutine, but rather we are passing a reference to a wave. The param-
eter w is the wave reference.

Waves are global objects that exist independent of functions. The subroutine can use the wave reference to
modify the contents of the wave. Using the terminology of “pass-by-value” and “pass-by-reference”, the
wave reference is passed by value, but this has the effect of “passing the wave” by reference.

Using Optional Parameters
Following is an example of a function with two optional input parameters:
Function OptionalParameterDemo(a,b, [c,d])

Variable a,b,c,d // c and d are optional parameters

// Determine if the optional parameters were supplied
if(ParamIsDefault(c) && ParamIsDefault(d))

Print "Missing optional parameters c and d."
endif

Chapter IV-3 — User-Defined Functions

IV-56

Print a,b,c,d
End

Executing on the command line with none of the optional inputs:
OptionalParameterDemo(8,6)
 Missing optional parameters c and d.
 8 6 0 0

Executing with an optional parameter as an input:
OptionalParameterDemo(8,6, c=66)
 8 6 66 0

Note that the optional parameter is explicitly defined in the function call using the ParamName=Value
syntax. All optional parameters must come after any required function parameters.

Local Versus Global Variables
Numeric and string variables can be local or global. “Local” means that the variable can be accessed only
from within the procedure in which it was created. “Global” means that the variable can be accessed from
the command line or from within any procedure. The following table shows the characteristics of local and
global variables:

Local variables are private to the function in which they are declared and cease to exist when the function
exits. Global variables are public and persistent — they exist until you explicitly delete them.

If you write a function whose main purpose is to display a dialog to solicit input from the user, you may
want to store the user’s choices in global variables and use them to initialize the dialog the next time the
user invokes it. This is an example of saving values from one invocation of a function to the next.

If you write a set of functions that loads, displays and analyzes experimentally acquired data, you may
want to use global variables to store values that describe the conditions under which the data was acquired
and to store the results from the analyses. These are examples of data accessed by many procedures.

With rare exceptions, you should not use global variables to pass information to procedures or from one
procedure to another. Instead, use parameters. Using global variables for these purposes creates a web of
hidden dependencies which makes understanding, reusing, and debugging procedures difficult.

Local Variables Used by Igor Operations
When invoked from a function, many Igor’s operations return results via local variables. For example, the
WaveStats operation creates a number of local variables with names such as V_avg, V_sigma, etc. The fol-
lowing function illustrates this point.
Function PrintWaveAverage(w)

WAVE w

Local Variables Global Variables

Are part of a procedure. Are part of the data folder hierarchy of an Igor experiment.

Created using Variable or String
within a procedure.

Created using Variable or String or Variable/G or String/G from
the command line or within a procedure.

Used to store temporary results while
the procedure is executing.

Used to store values that are saved from one procedure invocation
to the next.

Cease to exist when the procedure ends. Exist until you use KillVariables, KillStrings, or KillDataFolder.

Can be accessed only from within the
procedure in which they were created.

Can be accessed from the command line or from within any
procedure.

Chapter IV-3 — User-Defined Functions

IV-57

WaveStats/Q w
Print V_avg

End

When the Igor compiler compiles the WaveStats operation, it creates various local variables, V_avg among
them. When the WaveStats operation runs, it stores results in these local variables.

In addition to creating local variables, a few operations, such as CurveFit and FuncFit, check for the exis-
tence of specific local variables to provide optional behavior. For example:
Function ExpFitWithMaxIterations(w, maxIterations)

WAVE w
Variable maxIterations

Variable V_FitMaxIters = maxIterations

CurveFit exp w
End

The CurveFit operation looks for a local variable named V_FitMaxIters, which sets the maximum number
of iterations before the operation gives up.

The documentation for each operation lists the special variables that it creates or looks for.

Converting a String into a Reference Using $
The $ operator converts a string expression into an object reference. The referenced object is usually a wave
but can also be a global numeric or global string variable, a window, a symbolic path or a function. This is
a common and important technique.

We often use a string to pass the name of a wave to a procedure or to algorithmically generate the name of a wave.
Then we use the $ operator to convert the string into a wave reference so that we can operate on the wave.

The following trivial example shows why we need to use the $ operator:
Function MakeAWave(str)

String str

Make $str
End

Executing

MakeAWave("wave0")

creates a wave named wave0.

Here we use $ to convert the contents of the string parameter str into a name. The function creates a wave
whose name is stored in the str string parameter.

If we omitted the $ operator, we would have
Make str

This would create a wave named str, not a wave whos name is specified by the contents of str.

As shown in the following example, $ can create references to global numeric and string variables as well
as to waves.
Function Test(vStr, sStr, wStr)

String vStr, sStr, wStr

NVAR v = $vStr // v is local name for global numeric var
v += 1

Chapter IV-3 — User-Defined Functions

IV-58

SVAR s = $sStr // s is local name for global string var
s += "Hello"
WAVE w = $wStr // w is local name for global wave
w += 1

End

Variable/G gVar = 0; String/G gStr = ""; Make/O/N=5 gWave = p
Test("gVar", "gStr", "gWave")

The NVAR, SVAR and WAVE references are necessary in functions so that the compiler can identify the
kind of object. This is explained under Accessing Global Variables and Waves on page IV-59.

Using $ to Refer to a Window
A number of Igor operations modify or create windows, and optionally take the name of a window. You
need to use a string variable if the window name is not determined until run time but must convert the
string into a name using $.

For instance, this function creates a graph using a name specified by the calling function:

Function DisplayXY(xWave, yWave, graphNameStr)
Wave xWave, yWave
String graphNameStr // Contains name to use for the new graph

Display /N=$graphNameStr yWave vs xWave
End

The $ operator in /N=$graphNameStr converts the contents of the string graphNameStr into a graph name
as required by the Display operation /N flag. If you forget $, the command would be:

Display /N=graphNameStr yWave vs xWave

This would create a graph literally named graphNameStr.

Using $ In a Data Folder Path
$ can also be used to convert a string to a name in a data folder path. This is used when one of many data
folders must be selected algorithmically.

Assume you have a string variable named dfName that tells you in which data folder a wave should be cre-
ated. You can write:

Make/O root:$(dfName):wave0

The parentheses are necessary because the $ operator has low precedence.

Compile Time Versus Runtime
Because Igor user-defined functions are compiled, errors can occur during compilation (“compile time”) or
when a function executes (“runtime”). It helps in programming if you have a clear understanding of what
these terms mean.

Compile time is when Igor analyzes the text of all functions and produces low-level instructions that can be
executed quickly later. This happens when you modify a procedure window and then:
• Choose Compile from the Macros menu.
• Click the Compile button at the bottom of a procedure window.
• Activate a window other than a procedure or help window.

Runtime is when Igor actually executes a function’s low-level instructions. This happens when:
• You invoke the function from the command line.

Chapter IV-3 — User-Defined Functions

IV-59

• The function is invoked from another procedure.
• Igor updates a dependency which calls the function.
• You use a button or other control that calls the function.

Conditions that exist at compile time are different from those at runtime. For example, a function can ref-
erence a global variable. The global does not need to exist at compile time, but it does need to exist at run-
time. This issue is discussed in detail in the following sections.

Here is an example illustrating the distinction between compile time and runtime:
Function Example(w)

WAVE w

w = sin(x)
FFT w
w = r2polar(w)

End

The declaration “WAVE w” specifies that w is expected to be a real wave. This is correct until the FFT exe-
cutes and thus the first wave assignment produces the correct result. After the FFT is executed at runtime,
however, the wave becomes complex. The Igor compiler does not know this and so it compiled the second
wave assignment on the assumption that w is real. A compile-time error will be generated complaining that
r2polar is not available for this number type — i.e., real. To provide Igor with the information that the wave
is complex after the FFT you need to rewrite the function like this:
Function Example(w)

WAVE w

w= sin(x)
FFT w
WAVE/C wc = w
wc = r2polar(wc)

End

A statement like “WAVE/C wc = w” has the compile-time behavior of creating a symbol, wc, and specifying
that it refers to a complex wave. It has the runtime behavior of making wc refer to a specific wave. The
runtime behavior can not occur at compile time because the wave may not exist at compile time.

Accessing Global Variables and Waves
Global numeric variables, global string variables and waves can be referenced from any function. A func-
tion can refer to a global that does not exist at compile-time. For the Igor compiler to know what type of
global you are trying to reference, you need to declare references to globals.

Consider the following function:
Function BadExample()

gStr1 = "The answer is:"
gNum1 = 1.234
wave0 = 0

End

The compiler can not compile this because it doesn’t know what gStr1, gNum1 and wave0 are. We need to
specify that they are references to a global string variable, a global numeric variable and a wave, respec-
tively:
Function GoodExample1()

SVAR gStr1 = root:gStr1
NVAR gNum1 = root:gNum1
WAVE wave0 = root:wave0

gStr1 = "The answer is:"

Chapter IV-3 — User-Defined Functions

IV-60

gNum1 = 1.234
wave0 = 0

End

The SVAR statement specifies two important things for the compiler: first, that gStr1 is a global string vari-
able; second, that gStr1 refers to a global string variable named gStr1 in the root data folder. Similarly, the
NVAR statement identifies gNum1 and the WAVE statement identifies wave0. With this knowledge, the
compiler can compile the function.

The technique illustrated here is called “runtime lookup of globals” because the compiler compiles code
that associates the symbols gStr1, gNum1 and wave0 with specific global variables at runtime.

Runtime Lookup of Globals
The syntax for runtime lookup of globals is:
NVAR <local name1>[= <path to var1>][, <loc name2>[= <path to var2>]]…
SVAR <local name1>[= <path to str1>][, <loc name2>[= <path to str2>]]…
WAVE <local name1>[= <path to wave1>][, <loc name2>[= <path to wave2>]]…

NVAR creates a reference to a global numeric variable.

SVAR creates a reference to a global string variable.

WAVE creates a reference to a wave.

At compile time, these statements identify the referenced objects. At runtime, the connection is made
between the local name and the actual object. Consequently, the object must exist when these statements
are executed.

<local name> is the name by which the global variable, string or wave is to be known within the user func-
tion. It does not need to be the same as the name of the global variable. The example function could be
rewritten as follows:
Function GoodExample2()

SVAR str1 = root:gStr1 // str1 is the local name.
NVAR num1 = root:gNum1 // num1 is the local name.
WAVE w = root:wave0 // w is the local name.

str1 = "The answer is:"
num1 = 1.234
w = 0

End

If you use a local name that is the same as the global name, and if you want to refer to a global in the current
data folder, you can omit the <path to …> part of the declaration:
Function GoodExample3()

SVAR gStr1 // Refers to gStr1 in current data folder.
NVAR gNum1 // Refers to gNum1 in current data folder.
WAVE wave0 // Refers to wave0 in current data folder.

gStr1 = "The answer is:"
gNum1 = 1.234
wave0 = 0

End

GoodExample3 accesses globals in the current data folder while GoodExample2 accesses globals in a spe-
cific data folder.

If you use <path to …>, it may be a simple name (gStr1) or it may include a full or partial path to the name.

Chapter IV-3 — User-Defined Functions

IV-61

The following are valid examples, referencing a global numeric variable named gAvg:
NVAR gAvg= gAvg
NVAR avg= gAvg
NVAR gAvg
NVAR avg= root:Packages:MyPackage:gAvg
NVAR avg= :SubDataFolder:gAvg
NVAR avg= $"gAvg"
NVAR avg= $("g"+ "Avg")
NVAR avg= ::$"gAvg"

As illustrated above, the local name can be the same as the name of the global object and the lookup expres-
sion can be either a literal name or can be computed at runtime using $<string expression>.

If your function creates a global variable and you want to create a reference to it, put the NVAR statement
after the code that creates the global. The same applies to SVARs and, as explained next, to WAVEs.

Put WAVE Declaration After Wave Is Created
A wave declaration serves two purposes. At compile time, it tells Igor the local name and type of the wave.
At runtime, it connects the local name to a specific wave. In order for the runtime purpose to work, you
must put wave declaration after the wave is created.

Function BadExample()
String path = "root:Packages:MyPackage:wave0"
Wave w = $path // WRONG: Wave does not yet exist.
Make $path
w = p // w is not connected to any wave.

End

Function GoodExample()
String path = "root:Packages:MyPackage:wave0"
Make $path
Wave w = $path // RIGHT
w = p

End

Both of these functions will successfully compile. BadExample will fail at runtime because w is not associ-
ated with a wave, because the wave does not exist when the "Wave w = $path" statement executes.

This rule also applies to NVAR and SVAR declarations.

Runtime Lookup Failure
At runtime, it is possible that a NVAR, SVAR or WAVE statement may fail. For example,

NVAR v1 = var1

will fail if var1 does not exist in the current data folder when the statement is executed. You can use the
NVAR_Exists, SVAR_Exists, and WaveExists functions to test if a given global reference is valid:

Function Test()
NVAR/Z v1 = var1
if (NVAR_Exists(v1))

<use v1>
endif

End

Chapter IV-3 — User-Defined Functions

IV-62

The /Z flag is necessary to prevent an error if the NVAR statement fails. You can also use it with SVAR and
WAVE.
A common cause for failure is putting a WAVE statement in the wrong place. For example:
Function BadExample()

WAVE w = resultWave
<Call a function that creates a wave named resultWave>
Display w

End

This function will compile successfully but will fail at runtime. The reason is that the WAVE w = resultWave
statement has the runtime behavior of associating the local name w with a particular wave. But that wave does
not exist until the following statement is executed. The function should be rewritten as:
Function GoodExample()

<Call a function that creates a wave named resultWave>
WAVE w = resultWave
Display w

End

Runtime Lookup Failure and the Debugger
You can break whenever a runtime lookup fails using the symbolic debugger (described in Chapter IV-8,
Debugging). It is a good idea to do this, because it lets you know about runtime lookup failures at the
moment they occur.

Sometimes you may create a WAVE, NVAR or SVAR reference knowing that the referenced global may not
exist at runtime. Here is a trivial example:

Function Test()
WAVE w = testWave
if (WaveExists(testWave))

Printf "testWave had %d points.\r", numpnts(testWave)
endif

End

If you enable the debugger’s WAVE checking and if you execute the function when testWave does not exist,
the debugger will break and flag that the WAVE reference failed. But you wrote the function to handle this
situation, so the debugger break is not helpful in this case.

The solution is to rewrite the function using WAVE/Z instead of just WAVE. The /Z flag specifies that you
know that the runtime lookup may fail and that you don’t want to break if it does. You can use NVAR/Z
and SVAR/Z in a similar fashion.

Accessing Complex Global Variables and Waves
You must specify if a global numeric variable or a wave is complex using the /C flag:

NVAR/C gc1 = gc1
WAVE/C gcw1 = gcw1

Accessing Text Waves
Text waves must be accessed using the /T flag:

WAVE/T tw= MyTextWave

Accessing Global Variables and Waves Using Liberal Names
There are two ways to initialize a reference an Igor object: using a literal name or path or using a string vari-
able. For example:

Chapter IV-3 — User-Defined Functions

IV-63

Wave w = root:MyDataFolder:MyWave // Using literal path
String path = "root:MyDataFolder:MyWave"
Wave w = $path // Using string variable

Things get more complicated when you use a liberal name rather than a standard name. A standard name
starts with a letter and includes letters, digits and the underscore character. A liberal name includes other
characters such as spaces or punctuation.

In general, you must quote liberal names using single quotes so that Igor can determine where the name
starts and where it ends. For example:

Wave w = root:'My Data Folder':'My Wave' // Using literal path
String path = "root:'My Data Folder':'My Wave'"
Wave w = $path // Using string variable

However, there is an exception to the quoting requirement. The rule is:

You must quote a literal liberal name and you must quote a liberal path stored in a
string variable but you must not quote a simple literal liberal name stored in a string
variable.

The following functions illustrate this rule:

// Literal liberal name must be quoted
Function DemoLiteralLiberalNames()

NewDataFolder/O root:'My Data Folder'

Make/O root:'My Data Folder':'My Wave' // Literal name must be quoted

SetDataFolder root:'My Data Folder' // Literal name must be quoted

Wave w = 'My Wave' // Literal name must be quoted
w = 123

SetDataFolder root:
End

// String liberal PATH must be quoted
Function DemoStringLiberalPaths()

String path = "root:'My Data Folder'"
NewDataFolder/O $path

path = "root:'My Data Folder':'My Wave'" // String path must be quoted
Make/O $path

Wave w = $path
w = 123

SetDataFolder root:
End

// String liberal NAME must NOT be quoted
Function DemoStringLiberalNames()

SetDataFolder root:

String dfName = "My Data Folder" // String name must NOT be quoted
NewDataFolder/O $dfName

String wName = "My Wave" // String name must NOT be quoted
Make/O root:$(dfName):$wName

Wave w = root:$(dfName):$wName // String name must NOT be quoted

Chapter IV-3 — User-Defined Functions

IV-64

w = 123

SetDataFolder root:
End

The last example illustrates another subtlety. This command would generate an error at compile time:

Make/O root:$dfName:$wName // ERROR

because Igor would intepret it as:

Make/O root:$(dfName:$wName) // ERROR

To avoid this, you must use parentheses like this:

Make/O root:$(dfName):$wName // OK

Runtime Lookup Example
In this example, a function named Routine calls another function named Subroutine and needs to access a
number of result values created by Subroutine. To make it easy to clean up the temporary result globals,
Subroutine creates them in a new data folder. Routine uses the results created by Subroutine and then
deletes the temporary data folder.
Function Subroutine(w)

WAVE w

NewDataFolder/O/S SubroutineResults // Results go here

WaveStats/Q w // WaveStats creates local variables
Variable/G gAvg = V_avg // Return the V_avg result in global gAvg
Variable/G gMin = V_min
String/G gWName = NameOfWave(w)

SetDataFolder :: // Back to original data folder
End

Function Routine()
Make aWave= {1,2,3,4}
Subroutine(aWave)

DFREF dfr = :SubroutineResults

NVAR theAvg = dfr:gAvg // theAvg is local name
NVAR theMin = dfr:gMin
SVAR theName = dfr:gWName
Print theAvg, theMin, theName

KillDataFolder SubroutineResults // We are done with results
End

Note that the NVAR statement must appear after the call to the procedure (Subroutine in this case) that
creates the global variable. This is because NVAR has both a compile-time and a runtime behavior. At
compile time, it creates a local variable that Igor can compile (theAvg in this case). At runtime, it actually
looks up and creates a link to the global (variable gAvg stored in data folder SubroutineResults in this case).

Often a function needs to access a large number of global variables stored in a data folder. In such cases,
you can write more compact code using the ability of NVAR, SVAR and WAVE to access multiple objects
in one statement:
Function Routine2()

Make aWave= {1,2,3,4}
Subroutine(aWave)

Chapter IV-3 — User-Defined Functions

IV-65

DFREF dfr = :SubroutineResults

NVAR theAvg=dfr:gAvg, theMin=dfr:gMin // Access two variables
SVAR theName = dfr:gWName
Print theAvg, theMin, theName

KillDataFolder SubroutineResults // We are done with results
End

Automatic Creation of WAVE, NVAR and SVAR References
The Igor compiler sometimes automatically creates WAVE, NVAR and SVAR references. For example:
Function Example1()

Make/O wave0
wave0 = p

Variable/G gVar1
gVar1= 1

String/G gStr1
gStr1= "hello"

End

In this example, we did not use WAVE, NVAR or SVAR references and yet we were still able to compile
assignment statements referencing waves and global variables. This is a feature of Make, Variable/G and
String/G that automatically create local references for simple object names.

Simple object names are names which are known at compile time for objects which will be created in the
current data folder at runtime. Make, Variable/G and String/G do not create references if you use
$<name>, a partial data folder path or a full data folder path to specify the object.

Wave References
A wave reference is a value that identifies a particular wave. Wave references are used in commands that
operate on waves, including assignment statements and calls to operations and functions that take wave
reference parameters.

Wave reference variables hold wave references. They can be created as local variables, passed as parameters
and returned as function results.

Here is a simple example:

Function Test(wIn)
Wave wIn // Reference to the input wave received as parameter

String newName = NameOfWave(wIn) + "_out" // Compute output wave name

Duplicate/O wIn, $newName // Create output wave

Wave wOut = $newName // Create wave reference for output wave
wOut += 1 // Use wave reference in assignment statement

End

This function might be called from the command line or from another function like this:

Make/O/N=5 wave0 = p
Test(wave0) // Pass wave reference to Test function

A Wave statement declares a wave reference variable. It has both a compile-time and a runtime effect.

Chapter IV-3 — User-Defined Functions

IV-66

At compile time, it tells Igor what type of object the declared name references. In the example above, it tells
Igor that wOut references a wave as opposed to a numeric variable, a string variable, a window or some
other type of object. The Igor compiler allows wOut to be used in a waveform assignment statement (wOut
+= 1) because it knows that wOut references a wave.

The compiler also needs to know if the wave is real, complex or text. Use Wave/C to create a complex wave
reference and Wave/T to create a text wave reference. Wave by itself creates a real wave reference.

At runtime the Wave statement stores a reference to a specific wave in the wave reference variable (wOut
in this example). The referenced wave must already exist when the wave statement executes. Otherwise
Igor stores a NULL reference in the wave reference variable and you get an error when you attempt to use
it. We put the Wave wOut = $newName statement after the Duplicate operation to insure that the wave
exists when the Wave statement is executed. Putting the Wave statement before the command that creates
the wave is a common error.

Automatic Creation of WAVE References
The Igor compiler sometimes automatically creates WAVE references. For example:
Function Example1()

Make wave1
wave1 = x^2

End

In this example, we did not declare a wave reference, and yet Igor was still able to compile an assignment
statement referring to a wave. This is a feature of the Make operation (see page V-464) which automatically
creates local references for simple object names. The Duplicate operation (see page V-164) and many other
operations that create output waves also automatically create local wave references for simple object names.

Simple object names are names which are known at compile time for objects which will be created in the
current data folder at runtime. Make and Duplicate do not create references if you use $<name>, a partial
data folder path, or a full data folder path to specify the object.

In the case of Make and Duplicate with simple object names, the type of the automatically created wave ref-
erence (real, complex or text) is determined by flags. Make/C and Duplicate/C create complex wave refer-
ences. Make/T and Duplicate/T create text wave references. Make and Duplicate without type flags create
real wave references. See WAVE Reference Types on page IV-67 and WAVE Reference Type Flags on page
IV-68 for a complete list of type flags and further details.

Most built-in operations that create output waves (often called "destination" waves) also automatically
create wave references. For example, if you write:

DWT srcWave, destWave

it is as if you wrote:
DWT srcWave, destWave
WAVE destWave

After the discrete wavelet transform executes, you can reference destWave without an explicit wave reference.

Standalone WAVE Reference Statements
In cases where Igor does not automatically create a wave reference, because the output wave is not specified
using a simple object name, you need to explicitly create a wave reference if you want to access the wave in
an assignment statement.

You can create an explicit standalone wave reference using a statement following the command that created
the output wave. In this example, the name of the output wave is specified as a parameter and therefore we
can not use a simple object name when calling Make:

Function Example2(nameForOutputWave)
String nameForOutputWave // String contains the name of the wave to make

Chapter IV-3 — User-Defined Functions

IV-67

Make $nameForOutputWave // Make a wave
Wave w = $nameForOutputWave // Make a wave reference
w = x^2

End

If you make a text wave or a complex wave, you need to tell the Igor compiler about that by using Wave/T
or Wave/C. The compiler needs to know the type of the wave in order to properly compile the assignment
statement.

Inline WAVE Reference Statements
You can create a wave reference variable using /WAVE=<name> in the command that creates the output
wave. For example:

Function Example3(nameForOutputWave)
String nameForOutputWave

Make $nameForOutputWave/WAVE=w // Make a wave and a wave reference
w = x^2

End

Here /WAVE=w is an inline wave reference statement. It does the same thing as the standalone wave refer-
ence in the preceding section.

Here are some more examples of inline wave declarations:

Function Example4()
String name = "wave1"
Duplicate/O wave0, $name/WAVE=wave1
Differentiate wave0 /D=$name/WAVE=wave1

End

When using an inline wave reference statement, you do not need to, and in fact can not, specify the type of
the wave using WAVE/T or WAVE/C. Just use WAVE by itself regardless of the type of the output wave. The
Igor compiler automatically creates the right kind of wave reference. For example:

Function Example5()
Make real1, $"real2"/WAVE=r2 // real1, real2 and r2 are real
Make/C cplx1, $"cplx2"/WAVE=c2 // cplx1, cplx2 and c2 are complex
Make/T text1, $"text2"/WAVE=t2 // text1, text2 and t2 are text

End

Inline wave reference statements are accepted by those operations which automatically create a wave ref-
erence for a simple object name.

Inline wave references are not allowed after a simple object name.

Inline wave references are allowed on the command line but do nothing.

WAVE Reference Types
When wave references are created at compile time, they are created with a specific numeric type or are
defined as text. The compiler then uses this type when compiling expressions based on the WAVE reference
or when trying to match two instances of the same name. For example:
Make rWave // Creates single-precision real wave reference

Make/C cWave // Creates single-precision complex wave reference

Make/L int64Wave // Creates signed 64-bit integer wave reference

Make/L/U int64Wave // Creates unsigned 64-bit integer wave reference

Chapter IV-3 — User-Defined Functions

IV-68

Make/T tWave // Creates text wave reference

These types then define what kind of right-hand side expression Igor compiles:
rWave = expression // Compiles real expression as double precision

cWave = expression // Compiles complex expression as double precision

int64Wave = expression // Compiles signed 64-bit integer expression

uint64Wave = expression // Compiles unsigned 64-bit integer expression

tWave = expression // Compiles text expression

See also Integer Expressions in Wave Assignment Statements on page IV-37.

The compiler is sometimes picky about the congruence between two declarations of wave reference vari-
ables of the same name. For example:
WAVE aWave
if (!WaveExists(aWave))

Make/D aWave
endif

This generates a compile error complaining about inconsistent types for a wave reference. Because Make auto-
matically creates a wave reference, this is equivalent to:
WAVE aWave
if (!WaveExists(aWave))

Make/D aWave
WAVE/D aWave

endif

This creates two wave references with the same name but different types. To fix this, change the explicit
wave reference declaration to:
WAVE/D aWave

WAVE Reference Type Flags
The WAVE reference (see page V-924) along with certain operations such as Duplicate can accept the fol-
lowing flags identifying the type of WAVE reference:

These are the same flags used by the Make. In the case of WAVE declarations and Duplicate, they do not affect
the actual wave but rather tell Igor what kind of wave is expected at runtime. The compiler uses this informa-

/B 8-bit signed integer destination waves, unsigned with /U.

/C Complex destination waves.

/D Double precision destination waves.

/I 32-bit signed integer destination waves, unsigned with /U.

/L 64-bit signed integer destination waves, unsigned with /U.

Requires Igor Pro 7.00 or later.

/S Single precision destination waves.

/T Text destination waves.

/U Unsigned destination waves.

/W 16-bit signed integer destination waves, unsigned with /U.

/DF Wave holds data folder references.

/WAVE Wave holds wave references.

Chapter IV-3 — User-Defined Functions

IV-69

tion to determine what kind of code to compile if the wave is used as the destination of a wave assignment
statement later in the function. For example:
Function DupIt(wv)

WAVE/C wv // complex wave

Duplicate/O/C wv,dupWv // dupWv is complex
dupWv[0]=cmplx(5.0,1.0) // no error, because dupWv known complex
. . .

End

If Duplicate did not have the /C flag, you would get a “function not available for this number type” message
when compiling the assignment of dupWv to the result of the cmplx function.

Problems with Automatic Creation of WAVE References
Operations that change a wave's type or which can create output waves of more than one type, such as FFT,
IFFT and WignerTransform present special issues.

In some cases, the wave reference automatically created by an operation might be of the wrong type. For
example, the FFT operation automatically creates a complex wave reference for the destination wave, so if
you write:
FFT/DEST=destWave srcWave

it is as if you wrote:
FFT/DEST=destWave srcWave
WAVE/C destWave

However, if a real wave reference for the same name already exists, FFT/DEST does not create a new wave
reference. For example:
Wave destWave // Real wave reference
. . .
FFT /DEST=destWave srcWave // FFT does not create wave reference

// because it already exists.

In this case, you would need to create a complex wave reference using a different name, like this:
Wave/C cDestWave = destWave

The output of the FFT operation can sometimes be real, not complex. For example:
FFT/DEST=destWave/OUT=2 srcWave

The /OUT=2 flag creates a real destination wave. Thus the complex wave reference automatically created
by the FFT operation is wrong and can not be used to subsequently access the destination wave. In this case,
you must explicitly create a real wave reference, like this:
FFT/DEST=destWave/OUT=2 srcWave
WAVE realDestWave = destWave

Note that you can not write:
FFT/DEST=destWave/OUT=2 srcWave
WAVE destWave

because the FFT operation has already created a complex wave reference named destWave, so the com-
piler will generate an error. You must use a different name for the real wave reference.

The IFFT has a similar problem but in reverse. IFFT automatically creates a real wave reference for the des-
tination wave. In some cases, the actual destination wave will be complex and you will need to create an
explicit wave reference in order to access it.

Chapter IV-3 — User-Defined Functions

IV-70

WAVE Reference Is Needed to Pass a Wave By Name
As of Igor Pro 6.3, new procedure windows are created with this pragma statement:

#pragma rtGlobals=3 // Use modern global access method and strict wave access.

The strict wave access mode causes a compile error if you pass a literal wave name as a parameter to an operation
or function. Instead you must pass a wave reference.

With rtGlobals=3, this function has errors on both lines:

Function Test()
Display jack // Error: Expected wave reference
Variable tmp = mean(jack,0,100) // Error: Expected wave reference

End

The proper way to do this is to create a wave reference, like this:

Function Test()
WAVE jack
Display jack // OK
Variable tmp = mean(jack,0,100) // OK

End

The purpose of the strict wave access mode is to detect inadvertent name mistakes. This applies to simple names
only, not to full or partial paths. Even with rtGlobals=3, it is OK to use a full or partial path where a wave refer-
ence is expected:

Function Test()
Display :jack // OK
Variable tmp = mean(root:jack,0,100) // OK

End

If you have old code that is impractical to fix, you can revert to using rtGlobals=1 or rtGlobals=2.

Wave Reference Function Results
Advanced programmers can create functions that return wave references using Function/WAVE:

Function/WAVE Test(wIn) // /WAVE flag says function returns wave reference
Wave wIn // Reference to the input wave received as parameter

String newName = NameOfWave(wIn) + "_out" // Compute output wave name

Duplicate/O wIn, $newName // Create output wave

Wave wOut = $newName // Create wave reference for output wave
wOut += 1 // Use wave reference in assignment statement

return wOut // Return wave reference
End

This function might be called from another function like this:

Make/O/N=5 wave0 = p
Wave wOut = Test(wave0)
Display wave0, wOut

This technique is useful when a subroutine creates a free wave for temporary use:

Function Subroutine()
Make/FREE tempWave = <expression>
return tempWave

End

Chapter IV-3 — User-Defined Functions

IV-71

Function Routine()
Wave tempWave = Subroutine()
<Use tempWave>

End

When Routine returns, tempWave is automatically killed because all references to it have gone out of scope.

Wave Reference Waves
You can create waves that contain wave references using the Make /WAVE flag. You can use a wave refer-
ence wave as a list of waves for further processing and in multithreaded wave assignment using the Mul-
tiThread keyword.

Wave reference waves are recommended for advanced programmers only.

Note: Wave reference waves are saved only in packed experiment files. They are not saved in unpacked
experiments and are not saved by the SaveData operation or the Data Browser's Save Copy
button. In general, they are intended for temporary computation purposes only.

Here is an example:

Make/O wave0, wave1, wave2 // Make some waves
Make/O/WAVE wr // Make a wave reference wave
wr[0]=wave0; wr[1]=wave1; wr[2]=wave2 // Assign values

The wave reference wave wr could now be used, for example, to pass a list of waves to a function that per-
forms display or analysis operations.

Make/WAVE without any assignment creates a wave containing null wave references. Similarly, inserting
points or redimensioning to a larger size initializes the new points to null. Deleting points or redimension-
ing to a smaller size deletes any free waves if the deleted points contained the only reference to them.

To determine if a given wave is a type that stores wave references, use the WaveType function with the
optional selector = 1.

In the next example, a subroutine supplies a list of references to waves to be graphed by the main routine.
A wave reference wave is used to store the list of wave references.

Function MainRoutine()
Make/O/WAVE/N=5 wr // Will contain references to other waves
wr= Subroutine(p) // Fill w with references

WAVE w= wr[0] // Get reference to first wave
Display w // and display in a graph

Variable i
for(i=1;i<5;i+=1)

WAVE w= wr[i] // Get reference to next wave
AppendToGraph w // and append to graph

endfor
End

Function/WAVE Subroutine(i)
Variable i

String name = "wave"+num2str(i)

// Create a wave with a computed name and also a wave reference to it
Make/O $name/WAVE=w = sin(x/(8+i))

return w // Return the wave reference to the calling routine
End

Chapter IV-3 — User-Defined Functions

IV-72

As another example, here is a function that returns a wave reference wave containing references to all of the
Y waves in a graph:

Function/WAVE GetListOfYWavesInGraph(graphName)
String graphName // Must contain the name of a graph

// If graphName is not valid, return NULL wave
if (strlen(graphName)==0 || WinType(graphName)!=1)

return $""
endif

// Make a wave to contain wave references
Make /FREE /WAVE /N=0 listWave

Variable index = 0
do

// Get wave reference for next Y wave in graph
WAVE/Z w = WaveRefIndexed(graphName,index,1)
if (WaveExists(w) == 0)

break // No more waves
endif

// Add wave reference to list
InsertPoints index, 1, listWave
listWave[index] = w

index += 1
while(1) // Loop till break above

return listWave
End

The returned wave reference wave is a free wave. See Free Waves on page IV-84 for details.

For an example using a wave reference wave for multiprocessing, see Wave Reference MultiThread
Example on page IV-306.

Data Folder References
The data folder reference is a lightweight object that refers to a data folder, analogous to the wave reference
which refers to a wave. You can think of a data folder reference as an identification number that Igor uses
to identify a particular data folder.

Data folder reference variables (DFREFs) hold data folder references. They can be created as local variables,
passed as parameters and returned as function results.

The most common use for a data folder reference is to save and restore the current data folder during the
execution of a function:

Function Test()
DFREF saveDFR = GetDataFolderDFR() // Get reference to current data folder

NewDataFolder/O/S MyNewDataFolder // Create a new data folder
. . . // Do some work in it

SetDataFolder saveDFR // Restore current data folder
End

Data folder references can be used in commands where Igor accepts a data folder path. For example, this
function shows three equivalent methods of accessing waves in a specific data folder:

Chapter IV-3 — User-Defined Functions

IV-73

Function Test()
// Method 1: Using paths
Display root:Packages:'My Package':yWave vs root:Packages:'My Package':xWave

// Method 2: Using the current data folder
DFREF dfSave = GetDataFolderDFR()// Save the current data folder
SetDataFolder root:Packages:'My Package'
Display yWave vs xWave
SetDataFolder dfSave // Restore current data folder

// Method 3: Using data folder references
DFREF dfr = root:Packages:'My Package'
Display dfr:yWave vs dfr:xWave

End

Using data folder references instead of data folder paths can streamline programs that make heavy use of
data folders.

Using Data Folder References
In an advanced application, the programmer often defines a set of named data objects (waves, numeric vari-
ables and string variables) that the application acts on. These objects exist in a data folder. If there is just one
instance of the set, it is possible to hard-code data folder paths to the objects. Often, however, there will be
a multiplicity of such sets, for example, one set per graph or one set per channel in a data acquisition appli-
cation. In such applications, procedures must be written to act on the set of data objects in a data folder spec-
ified at runtime.

One way to specify a data folder at runtime is to create a path to the data folder in a string variable. While
this works, you wind up with code that does a lot of concatenation of data folder paths and data object
names. Using data folder references, such code can be streamlined.

You create a data folder reference variable with a DFREF statement. For example, assume your application
defines a set of data with a wave named wave0, a numeric variable named num0 and a string named str0
and that we have one data folder containing such a set for each graph. You can access your objects like this:

Function DoSomething(graphName)
String graphName
DFREF dfr = root:Packages:MyApplication:$graphName
WAVE w0 = dfr:wave0
NVAR n0 = dfr:num0
SVAR s0 = dfr:str0
. . .

End

Igor accepts a data folder reference in any command in which a data folder path would be accepted. For
example:

Function Test()
Display root:MyDataFolder:wave0 // OK

DFREF dfr = root:MyDataFolder
Display dfr:wave0 // OK

String path = "root:MyDataFolder:wave0"
Display $path // OK. $ converts string to path.

path = "root:MyDataFolder"
DFREF dfr = $path // OK. $ converts string to path.
Display dfr:wave0 // OK

String currentDFPath

Chapter IV-3 — User-Defined Functions

IV-74

currentDFPath = GetDataFolder(1) // OK
DFREF dfr = GetDataFolder(1) // ERROR: GetDataFolder returns a string

// not a path.

DFREF dfr = GetDataFolderDFR() // OK
End

The /SDFR Flag
You can also use the /SDFR (source data folder reference) flag in a WAVE, NVAR or SVAR statement. The
utility of /SDFR is illustrated by this example which shows three different ways to reference multiple waves
in the same data folder:

Function Test()
// Assume a data folder exists at root:Run1

// Use explicit paths
Wave wave0=root:Run1:wave0, wave1=root:Run1:wave1, wave2=root:Run1:wave2

// Use a data folder reference
DFREF dfr = root:Run1
Wave wave0=dfr:wave0, wave1=dfr:wave1, wave2=dfr:wave2

// Use the /SDFR flag
DFREF dfr = root:Run1
Wave/SDFR=dfr wave0, wave1, wave2

End

The DFREF Type
In functions, you can define data folder reference variables using the DFREF declaration:

DFREF localname [= <DataFolderRef or path>] [<more defs]

You can then use the data folder reference in those places where you can use a data folder path. For exam-
ple:

DFREF dfr = root:df1
Display dfr:wave1 // Equivalent to Display root:df1:wave1

The syntax is limited to a single name after the data folder reference, so this is not legal:

Display dfr:subfolder:wave1 // Illegal

You can use DFREF to define input parameters for user-defined functions. For example:

Function Test(df)
DFREF df
Display df:wave1

End

You can also use DFREF to define fields in structures. However, you can not directly use a DFREF structure
field in those places where Igor is expecting a path and object name. So, instead of:

Display s.dfr:wave1 // Illegal

you would need to write:

DFREF dftmp = s.dfr
Display dftmp:wave1 // OK

You can use a DFREF structure field where just a path is expected. For example:

SetDataFolder s.dfr // OK

Chapter IV-3 — User-Defined Functions

IV-75

Built-in DFREF Functions
Some built-in functions take string data folder paths as parameters or return them as results. Those func-
tions can not take or return data folder references. Here are equivalent DFREF versions that take or return
data folder references:

GetDataFolderDFR()

GetIndexedObjNameDFR(dfr, type, index)

GetWavesDataFolderDFR(wave)

CountObjectsDFR(dfr, type)

These additional data folder reference functions are available:

DataFolderRefStatus(dfr)

NewFreeDataFolder()

DataFolderRefsEqual(dfr1, dfr2)

Just as operations that take a data folder path accept a data folder reference, these DFREF functions can also
accept a data folder path:

Function Test()
DFREF dfr = root:MyDataFolder
Print CountObjectsDFR(dfr,1) // OK
Print CountObjectsDFR(root:MyDataFolder,1) // OK

End

Checking Data Folder Reference Validity
The DataFolderRefStatus function returns zero if the data folder reference is invalid. You should use it to
test any DFREF variables that might not be valid, for example, when you assign a value to a data folder ref-
erence and you are not sure that the referenced data folder exists:

Function Test()
DFREF dfr = root:MyDataFolder // MyDataFolder may or may not exist
if (DataFolderRefStatus(dfr) != 0)

. . .
endif

End

For historical reasons, an invalid DFREF variable will often act like root.

Data Folder Reference Function Results
A user-defined function can return a data folder reference. This might be used for a subroutine that returns
a set of new objects to the calling routine. The set can be returned in a new data folder and the subroutine
can return a reference it.

For example:

Function/DF Subroutine(newDFName)
String newDFName
NewDataFolder/O $newDFName
DFREF dfr = $newDFName
Make/O dfr:wave0, dfr:wave1
return dfr

End

Function/DF MainRoutine()
DFREF dfr = Subroutine("MyDataFolder")

Chapter IV-3 — User-Defined Functions

IV-76

Display dfr:wave0, dfr:wave1
End

Data Folder Reference Waves
You can create waves that contain data folder references using the Make /DF flag. You can use a data folder
reference wave as a list of data folders for further processing and in multithreaded wave assignment using
the MultiThread keyword.

Data folder reference waves are recommended for advanced programmers only.

Note: Data folder reference waves are saved only in packed experiment files. They are not saved in
unpacked experiments and are not saved by the SaveData operation or the Data Browser's Save
Copy button. In general, they are intended for temporary computation purposes only.

Make/DF without any assignment creates a wave containing null data folder references. Similarly, inserting
points or redimensioning to a larger size initializes the new points to null. Deleting points or redimension-
ing to a smaller size deletes any free data folders if the wave contained the only reference to them.

To determine if a given wave is a type that stores data folder references, use the WaveType function with
the optional selector = 1.

For an example using a data folder reference wave for multiprocessing, see Data Folder Reference Multi-
Thread Example on page IV-304.

Accessing Waves in Functions
To access a wave in a user-defined function, we need to create, one way or another, a wave reference. The
section Accessing Global Variables and Waves on page IV-59 explained how to access a wave using a
WAVE reference. This section introduces several additional techniques.

We can create the wave reference by:
• Declaring a wave parameter
• Using $<string expression>
• Using a literal wave name
• Using a wave reference function

Each of these techniques is illustrated in the following sections.

Each example shows a function and commands that call the function. The function itself illustrates how to
deal with the wave within the function. The commands show how to pass enough information to the func-
tion so that it can access the wave. Other examples can be found in Writing Functions that Process Waves
on page III-143.

Wave Reference Passed as Parameter
This is the simplest method. The function might be called from the command line or from another function.
Function Test(w)

WAVE w // Wave reference passed as a parameter

w += 1 // Use in assignment statement
Print mean(w) // Pass as function parameter
WaveStats w // Pass as operation parameter
AnotherFunction(w) // Pass as user function parameter

End

Make/O/N=5 wave0 = p
Test(wave0)
Test($"wave0")
String wName = "wave0"; Test($wName)

Chapter IV-3 — User-Defined Functions

IV-77

In the first call to Test, the wave reference is a literal wave name. In the second call, we create the wave refer-
ence using $<literal string>. In the third call, we create the wave reference using $<string variable>. $<literal
string> and $<string variable> are specific cases of the general case $<string expression>.

If the function expected to receive a reference to a text wave, we would declare the parameter using:
WAVE/T w

If the function expected to be receive a reference to a complex wave, we would declare the parameter using:
WAVE/C w

If you need to return a large number of values to the calling routine, it is sometimes convenient to use a
parameter wave as an output mechanism. The following example illustrates this technique:
Function MyWaveStats(inputWave, outputWave)

WAVE inputWave
WAVE outputWave

WaveStats/Q inputWave

outputWave[0] = V_npnts
outputWave[1] = V_avg
outputWave[2] = V_sdev

End

Function Test()
Make/O testwave= gnoise(1)

Make/O/N=20 tempResultWave
MyWaveStats(testwave, tempResultWave)
Variable npnts = tempResultWave[0]
Variable avg = tempResultWave[1]
Variable sdev = tempResultWave[2]
KillWaves tempResultWave

Printf "Points: %g; Avg: %g; SDev: %g\r", npnts, avg, sdev
End

If the calling function needs the returned values only temporarily, it is better to return a free wave as the
function result. See Wave Reference Function Results on page IV-70.

Wave Accessed Via String Passed as Parameter
This technique is of most use when the wave might not exist when the function is called. It is appropriate
for functions that create waves.
Function Test(wName)

String wName // String containing a name for wave

Make/O/N=5 $wName
WAVE w = $wName // Create a wave reference
Print NameOfWave(w)

End

Test("wave0")

This example creates wave0 if it does not yet exist or overwrites it if it does exist. If we knew that the wave
had to already exist, we could and should use the wave parameter technique shown in the preceding sec-
tion. In this case, since the wave may not yet exist, we can not use a wave parameter.

Notice that we create a wave reference immediately after making the wave. Once we do this, we can use
the wave reference in all of the ways shown in the preceding section. We can not create the wave reference
before making the wave because a wave reference must refer to an existing wave.

Chapter IV-3 — User-Defined Functions

IV-78

The following example demonstrates that $wName and the wave reference w can refer to a wave that is not
in the current data folder.
NewDataFolder root:Folder1
Test("root:Folder1:wave0")

Wave Accessed Via String Calculated in Function
This technique is used when creating multiple waves in a function or when algorithmically selecting a wave
or a set of waves to be processed.
Function Test(baseName, startIndex, endIndex)

String baseName
Variable startIndex, endIndex

Variable index = startIndex
do

String name = baseName + num2istr(index)
WAVE w = $name
Variable avg = mean(w)
Printf "Wave: %s; average: %g\r", NameOfWave(w), avg
index += 1

while (index <= endIndex)
End

Make/O/N=5 wave0=gnoise(1), wave1=gnoise(1), wave2=gnoise(1)
Test("wave", 0, 2)

We need to use this method because we want the function to operate on any number of waves. If the func-
tion were to operate on a small, fixed number of waves, we could use the wave parameter method.

As in the preceding section, we create the wave reference using $<string expression>.

Wave Accessed Via Literal Wave Name
In data acquisition or analysis projects, you often need to write procedures that deal with runs of identically-
structured data. Each run is stored in its own data folder and contains waves with the same names. In this
kind of situation, you can write a set of functions that use literal wave names specific for your data structure.
Function CreateRatio()

WAVE dataA, dataB
Duplicate dataA, ratioAB
WAVE ratioAB
ratioAB = dataA / dataB

End

Make/O/N=5 dataA = 1 + p, dataB = 2 + p
CreateRatio()

The CreateRatio function assumes the structure and naming of the data. The function is hard-wired to this
naming scheme and assumes that the current data folder contains the appropriate data.

We don’t need explicit wave reference variables because Make and Duplicate creat automatic wave refer-
ence for simple wave names, as explained under Automatic Creation of WAVE References on page IV-66.

Wave Accessed Via Wave Reference Function
A wave reference function is a built-in Igor function or user-defined function that returns a reference to a
wave. Wave reference functions are typically used on the right-hand side of a WAVE statement. For exam-
ple:
WAVE w = WaveRefIndexedDFR(:,i) // ith wave in current data folder

A common use for a wave reference function is to get access to waves displayed in a graph, using the Trace-
NameToWaveRef function. Here is an example.

Chapter IV-3 — User-Defined Functions

IV-79

Function PrintAverageOfDisplayedWaves()
String list, traceName

list = TraceNameList("",";",1) // List of traces in top graph
Variable index = 0
do

traceName = StringFromList(index, list) // Next trace name
if (strlen(traceName) == 0)

break // No more traces
endif
WAVE w = TraceNameToWaveRef("", traceName)// Get wave ref
Variable avg = mean(w)
Printf "Wave: %s; average: %g\r", NameOfWave(w), avg
index += 1

while (1) // loop till break above
End

Make/O/N=5 wave0=gnoise(1), wave1=gnoise(1), wave2=gnoise(1)
Display wave0, wave1, wave2
PrintAverageOfDisplayedWaves()

See Wave Reference Waves on page IV-71 for an example using WaveRefIndexed to return a list of all of
the Y waves in a graph.

There are other built-in wave reference functions (see Wave Reference Functions on page IV-186), but
WaveRefIndexed, WaveRefIndexedDFR and TraceNameToWaveRef are the most used.

See Wave Reference Function Results on page IV-70 for details on user-defined functions that return wave
references.

Destination Wave Parameters
Many operations create waves. Examples are Make, Duplicate and Differentiate. Such operations take "des-
tination wave" parameters. A destination wave parameter can be:

The wave reference works only in a user-defined function. The other techniques work in functions, in
macros and from the command line.

Using the first three techniques, the destination wave may or may not already exist. It is created if it does
not exist and overwritten if it does exist.

In the last technique, the destination wave parameter is a wave reference. This technique works properly
only if the referenced wave already exists. Otherwise the destination wave is a wave with the name of the
wave reference itself (w in this case) in the current data folder. This situation is further explained below
under Destination Wave Reference Issues on page IV-80.

Wave Reference as Destination Wave
Here are the rules for wave references when used as destination waves:

A simple name Differentiate fred /D=jack

A path Differentiate fred /D=root:FolderA:jack

$ followed by a string expression String str = "root:FolderA:jack"
Differentiate fred /D=$str

A wave reference to an existing wave Wave w = jack
Differentiate fred /D=w

Chapter IV-3 — User-Defined Functions

IV-80

1. If a simple name (not a wave reference) is passed as the destination wave parameter, the destination
wave is a wave of that name in the current data folder whether it exists or not.

2. If a path or $ followed by a string containing a path is passed as the destination wave parameter, the
destination wave is specified by the path whether the specified wave exists or not.

3. If a wave reference is passed as the destination wave parameter, the destination wave is the refer-
enced wave if it exists. See Destination Wave Reference Issues on page IV-80 for what happens if
it does not exist.

Exceptions To Destination Wave Rules
The Make operation is an exception in regard to wave references. The following statements make a wave
named w in the current data folder whether root:FolderA:jack exists or not:

Wave/Z w = root:FolderA:jack
Make/O w

Prior to Igor Pro 6.20, many operations behaved like Make in this regard. In Igor Pro 6.20 and later, most
operations behave like Differentiate.

Updating of Destination Wave References
When a simple name is provided as the destination wave parameter in a user-defined function, Igor auto-
matically creates a wave reference variable of that name at compile time if one does not already exist. This
is an implicit automatic wave reference variable.

When a wave reference variable exists, whether implicit or explicit, during the execution of the command,
the operation stores a reference to the destination wave in that wave reference variable. You can use the
wave reference to access the destination wave in subsequent commands.

Similarly, when the destination is specified using a wave reference field in a structure, the operation
updates the field to refer to the destination wave.

Inline Wave References With Destination Waves
When the destination wave is specified using a path or a string containing a path, you can use an inline
wave reference to create a reference to the destination wave. For example:

String dest = "root:FolderA:jack"
Differentiate input /D=$dest/WAVE=wDest
Display wDest

Here the Igor compiler creates a wave reference named wDest. The Differentiate operation stores a refer-
ence to the destination wave (root:FolderA:jack in this case) in wDest which can then be used to access the
destination wave in subsequent commands.

Inline wave references do not determine which wave is the destination wave but merely provide a wave
reference pointing to the destination wave when the command finishes.

Destination Wave Reference Issues
You will get unexpected behavior when a wave reference variable refers to a wave with a different name or
in a different data folder and the referenced wave does not exist. For example, if the referenced wave does
not exist:

Wave/Z w = jack
Differentiate fred /D=w // Creates a wave named w in current data folder

Wave/Z w = root:FolderA:jack
Differentiate fred /D=w // Creates a wave named w in current data folder

Wave/Z jack = root:FolderA:jack
Differentiate fred /D=jack // Creates a wave named jack in current data folder

Chapter IV-3 — User-Defined Functions

IV-81

STRUCT MyStruct s // Contains wave ref field w
Differentiate fred /D=s.w // Creates a wave named w in current data folder

In a situation like this, you should add a test using WaveExists to verify that the destination wave is valid
and throw an error if not or otherwise handle the situation. For example:

Wave/Z w = root:FolderA:jack
if (!WaveExists(w))

Abort "Destination wave does not exist"
endif
Differentiate fred /D=w

As noted above, when you use a simple name as a destination wave, the Igor compiler automatically creates
a wave reference. If the automatically-created wave reference conflicts with a pre-existing wave reference,
the compiler generates an error. For example, this function generates an "inconsistent type for wave refer-
ence error":

Function InconsistentTypeError()
Wave/C w // Explicit complex wave reference
Differentiate fred /D=w // Implicit real wave reference

End

Another consideration involves loops. Suppose in a loop you have code like this:

SetDataFolder <something depending on loop index>
Duplicate/O srcWave, jack

You may think you are creating a wave named jack in each data folder but, because the contents of the auto-
matically-created wave refrence variable jack is non-null after the first iteration, you will simply be over-
writing the same wave over and over. To fix this, use

Duplicate/O srcWave,jack
WaveClear jack

or

Duplicate/O srcWave,$"jack"/WAVE=jack

This creates a wave named jack in the current data folder and stores a reference to it in a wave reference
variable also named jack.

Changes in Destination Wave Behavior
Igor's handling of destination wave references was improved for Igor Pro 6.20. Previously some operations
treated wave references as simple names, did not set the wave reference to refer to the destination wave on
output, and exhibited other non-standard behavior.

Programming With Trace Names
A trace is the graphical representation of a 1D wave or a subset of a multi-dimensional wave. Each trace in
a given graph has a unique name within that graph.

The name of a trace is, by default, the same as the name of the wave that it represents, but this is not always
the case. For example, if you display the same wave twice in a given graph, the two trace names will be
unique. Also, for programming convenience, an Igor programmer can create a trace whose name has no
relation to the represented wave.

Trace names are used when changing traces in graphs, when accessing waves associated with traces in
graphs, and when getting information about traces in graphs. See Trace Names on page II-216 for a general
discussion.

Chapter IV-3 — User-Defined Functions

IV-82

These operations take trace name parameters:

ModifyGraph (traces), ErrorBars, RemoveFromGraph, ReplaceWave, ReorderTraces, GraphWaveEdit

Tag, TextBox, Label, Legend

These operations return trace names:

GetLastUserMenuInfo

These functions take trace name parameters:

TraceInfo, TraceNameToWaveRef, XWaveRefFromTrace

These functions return trace names:

TraceNameList, CsrInfo, CsrWave, TraceFromPixel

Trace Name Parameters
A trace name is not the same as a wave. An example may clarify this subtle point:
Function Test()

Wave w = root:FolderA:wave0
Display w
ModifyGraph rgb(w) = (65535,0,0) // WRONG

End

This is wrong because ModifyGraph is looking for the name of a trace in a graph and w is not the name of
a trace in a graph. The name of the trace in this case is wave0. The function should be written like this:
Function Test()

Wave w = root:FolderA:wave0
Display w
ModifyGraph rgb(wave0) = (65535,0,0) // CORRECT

End

In the next example, the wave is passed to the function as a parameter so the name of the trace is not so obvious:
Function Test(w)

Wave w
Display w
ModifyGraph rgb(w) = (65535,0,0) // WRONG

End

This is wrong for the same reason as the first example: w is not the name of the trace. The function should
be written like this:
Function Test(w)

Wave w
Display w

String name = NameOfWave(w)
ModifyGraph rgb($name) = (65535,0,0) // CORRECT

End

User-defined Trace Names
As of Igor Pro 6.20, you can provide user-defined names for traces using /TN=<name> with Display and
AppendToGraph. For example:

Make/O jack=sin(x/8)
NewDataFolder/O foo; Make/O :foo:jack=sin(x/9)
NewDataFolder/O bar; Make/O :bar:jack=sin(x/10)
Display jack/TN='jack in root', :foo:jack/TN='jack in foo'
AppendToGraph :bar:jack/TN='jack in bar'

Chapter IV-3 — User-Defined Functions

IV-83

ModifyGraph mode('jack in bar')=7,hbFill('jack in bar')=6
ModifyGraph rgb('jack in bar')=(0,0,65535)

Trace Name Programming Example
This example illustrates applying some kind of process to each trace in a graph. It appends a smoothed
version of each trace to the graph. To try it, copy the code below into the procedure window of a new exper-
iment and execute these commands one-at-a-time:

SetupForSmoothWavesDemo()
AppendSmoothedWavesToGraph("", 5) // Less smoothing
AppendSmoothedWavesToGraph("", 15) // More smoothing

Function SetupForSmoothWavesDemo()
Variable numTraces = 3

Display /W=(35,44,775,522) // Create graph

Variable i
for(i=0; i<numTraces; i+=1)

String xName, yName
sprintf xName, "xWave%d", i
sprintf yName, "yWave%d", i
Make /O /N=100 $xName = p + 20*i
Wave xW = $xName
Make /O /N=100 $yName = p + gnoise(5)
Wave yW = $yName
AppendToGraph yW vs xW

endfor
End

Function CopyTraceOffsets(graphName, sourceTraceName, destTraceName)
String graphName // Name of graph or "" for top graph
String sourceTraceName // Name of source trace
String destTraceName // Name of dest trace

// info will be "" if no offsets or something like "offset(x)={10,20}"
String info = TraceInfo(graphName, sourceTraceName, 0)

String offsetStr = StringByKey("offset(x)", info, "=") // e.g., "{10,20}"
Variable xOffset=0, yOffset=0
if (strlen(offsetStr) > 0)

sscanf offsetStr, "{%g,%g}", xOffset, yOffset
endif
ModifyGraph offset($destTraceName) = {xOffset, yOffset}

End

Function AppendSmoothedWavesToGraph(graphName, numSmoothingPasses)
String graphName // Name of graph or "" for top graph
Variable numSmoothingPasses // Parameter to Smooth operation, e.g., 15

// Get list of all traces in graph
String traceList = TraceNameList(graphName, ";", 3)
Variable numTraces = ItemsInList(traceList)
Variable traceIndex

// Remove traces representing smoothed waves previously added
for(traceIndex=0; traceIndex<numTraces; traceIndex+=1)

String traceName = StringFromList(traceIndex, traceList)
if (StringMatch(traceName, "*_sm"))

traceList = RemoveFromList(traceName, traceList)
numTraces -= 1

Chapter IV-3 — User-Defined Functions

IV-84

traceIndex -= 1
endif

endfor

// Create smoothed versions of the traces
for(traceIndex=0; traceIndex<numTraces; traceIndex+=1)

traceName = StringFromList(traceIndex, traceList)

Variable isXYTrace = 0

Wave yW = TraceNameToWaveRef(graphName, traceName)
DFREF dfr = $GetWavesDataFolder(yW, 1)
String ySmoothedName = NameOfWave(yW) + "_sm"
// Create smoothed wave in data folder containing Y wave
Duplicate /O yW, dfr:$ySmoothedName
Wave yWSmoothed = dfr:$ySmoothedName
Smooth numSmoothingPasses, yWSmoothed

Wave/Z xW = XWaveRefFromTrace(graphName, traceName)
if (WaveExists(xW)) // It is an XY pair?

isXYTrace = 1
endif

// Append smoothed wave to graph if it is not already in it
CheckDisplayed /W=$graphName yWSmoothed
if (V_flag == 0) // Not yet already in graph?

if (isXYTrace)
AppendToGraph yWSmoothed vs xW

else
AppendToGraph yWSmoothed

endif
ModifyGraph /W=$graphName rgb($ySmoothedName) = (0, 0, 65535)

endif

// Copy trace offsets from input trace to smoothed trace
CopyTraceOffsets(graphName, traceName, ySmoothedName)

endfor
End

Free Waves
Free waves are waves that are not part of any data folder hierarchy. Their principal use is in multithreaded
wave assignment using the MultiThread keyword in a function. They can also be used for temporary
storage within functions.

Free waves are recommended for advanced programmers only.

Note: Free waves are saved only in packed experiment files. They are not saved in unpacked
experiments and are not saved by the SaveData operation or the Data Browser's Save Copy
button. In general, they are intended for temporary computation purposes only.

You create free waves using the NewFreeWave function and the Make/FREE and Duplicate/FREE opera-
tions.

Here is an example:

Function ReverseWave(w)
Wave w

Variable lastPoint = numpnts(w) - 1
if (lastPoint > 0)

Chapter IV-3 — User-Defined Functions

IV-85

// This creates a free wave named wTemp.
// It also creates an automatic wave reference named wTemp
// which refers to the free wave.
Duplicate /FREE w, wTemp

w = wTemp[lastPoint-p]
endif

End

In this example, wTemp is a free wave. As such, it is not contained in any data folder and therefore can not
conflict with any other wave.

As explained below under Free Wave Lifetime on page IV-86, a free wave is automatically deleted when
there are no more references to it. In this example that happens when the function ends.

You can access a free wave only using the wave reference returned by NewFreeWave, Make/FREE or Dupli-
cate/FREE.

Free waves can not be used in situations where global persistence is required such as in graphs, tables and
controls. In other words, you should use free waves for computation purposes only.

For a discussion of multithreaded assignment statements, see Automatic Parallel Processing with Multi-
Thread on page IV-303. For an example using free waves, see Wave Reference MultiThread Example on
page IV-306.

Free Wave Created When Free Data Folder Is Deleted
In addition to the explicit creation of free waves, a wave that is created in a free data folder becomes free if
the host data folder is deleted but a reference to the wave still exists. For example:

Function/WAVE Test()
DFREF dfSav= GetDataFolderDFR()

SetDataFolder NewFreeDataFolder()
Make jack={1,2,3}// jack is not a free wave at this point.
// This also creates an automatic wave reference named jack.

SetDataFolder dfSav
// The free data folder is now gone but jack persists
// because of the wave reference to it and is now a free wave.

return jack
End

Free Wave Created For User Function Input Parameter
If a user function takes a wave reference as in input parameter, you can create and pass a short free wave
using a list of values as illustrated here:

Function Test(w)
WAVE/D w
Print w

End

You can invoke this function like this:

Test({1,2,3})

Igor automatically creates a free wave and passes it to Test. The free wave is automatically deleted when
Test returns.

The data type of the free wave is determined by the type of the function's wave parameter. In this case the
free wave is created as double-precision floating point because the wave parameter is defined using the /D

Chapter IV-3 — User-Defined Functions

IV-86

flag. If /D were omitted, the free wave would be single-precision floating point. Wave/C/D would give a
double-precision complex free wave. Wave/T would give a text free wave.

This list of values syntax is allowed only for user-defined functions because only they have code to test for
and delete free waves upon exit.

Free Wave Lifetime
A free wave is automatically deleted when the last reference to it disappears.

Wave references can be stored in:

1. Wave reference variables in user-defined functions
2. Wave reference fields in structures
3. Elements of a wave reference wave (created by Make/WAVE)

The first case is the most common.

A wave reference disappears when:

1. The wave reference variable containing it is explicitly cleared using WaveClear.
2. The wave reference variable containing it is reassigned to refer to another wave.
3. The wave reference variable containing it goes out-of-scope and ceases to exist when the function

in which it was created returns.
4. The wave reference wave element containing it is deleted or the wave reference wave is killed.

When there are no more references to a free wave, Igor automatically deletes it. This example illustrates the
first three of these scenarios:

Function TestFreeWaveDeletion1()
Wave w = NewFreeWave(2,3) // Create a free wave with 3 points
WaveClear w // w no longer refers to the free wave
// There are no more references to the free wave so it is deleted

Wave w = NewFreeWave(2,3) // Create a free wave with 3 points
Wave w = root:wave0 // w no longer refers to the free wave
// There are no more references to the free wave so it is deleted

Wave w = NewFreeWave(2,3) // Create a free wave with 3 points
End // Wave reference w ceases to exist so the free wave is deleted

In the preceding example we used NewFreeWave which creates a free wave named 'f' that is not part of any
data folder. Next we will use Make/FREE instead of NewFreeWave. Using Make allows us to give the free
wave a name of our choice but it is still free and not part of any data folder. When reading this example,
keep in mind that "Make jack" creates an automatic wave reference variable named jack:

Function TestFreeWaveDeletion2()
Make /D /N=3 /FREE jack // Create a free DP wave with 3 points
// Make created an automatic wave reference named jack

Make /D /N=5 /FREE jack // Create a free DP wave with 5 points
// Make created an automatic wave reference named jack
// which refers to the 5-point jack.
// There are now no references to 3-point jack so it is automatically deleted.

End // Wave reference jack ceases to exist so free wave jack is deleted

In the next example, a subroutine returns a reference to a free wave to the calling routine:

Function/WAVE Subroutine1()
Make /D /N=3 /FREE jack=p // Create a free DP wave with 3 points
return jack // Return reference to calling routine

Chapter IV-3 — User-Defined Functions

IV-87

End

Function MainRoutine1()
WAVE w= Subroutine1() // Wave reference w references the free wave jack
Print w

End // Wave reference w ceases to exist so free wave jack is deleted

In the next example, the wave jack starts as an object in a free data folder (see Free Data Folders on page
IV-88). It is not free because it is part of a data folder hierarchy even though the data folder is free. When
the free data folder is deleted, jack becomes a free wave.

When reading this example, keep in mind that the free data folder is automatically deleted when there are
no more references to it. Originally, it survives because it is the current data folder and therefore is refer-
enced by Igor internally. When it is no longer the current data folder, there are no more references to it and
it is automatically deleted:

Function/WAVE Subroutine2()
DFREF dfSav= GetDataFolderDFR()

// Create free data folder and set as current data folder
SetDataFolder NewFreeDataFolder()

// Create wave jack and an automatic wave reference to it
Make jack={1,2,3} // jack is not free - it is an object in a data folder

SetDataFolder dfSav // Change the current data folder
// There are now no references to the free data folder so it is deleted
// but wave jack remains because there is a reference to it.
// jack is now a free wave.

return jack // Return reference to free wave to calling routine
End

Function MainRoutine2()
WAVE w= Subroutine2() // Wave reference w references free wave jack
Print w

End // Wave reference w ceases to exist so free wave jack is deleted

Not shown in this section is the case of a free wave that persists because a reference to it is stored in a wave
reference wave. That situation is illustrated by the Automatic Parallel Processing with MultiThread on
page IV-303 example.

Free Wave Leaks
A leak occurs when an object is created and is never released. Leaks waste memory. Igor uses wave refer-
ence counting to prevent leaks but in the case of free waves there are special considerations.

A free wave must be stored in a wave reference variable in order to be automatically released because Igor
does the releasing when a wave reference variable goes out of scope.

The following example results in two memory leaks:

Function/WAVE GenerateFree()
return NewFreeWave(2,3)

End

Function Leaks()
Duplicate GenerateFree(),dummy // This leaks
Variable maxVal = WaveMax(generateFree()) // So does this

End

Chapter IV-3 — User-Defined Functions

IV-88

Both lines leak because the free wave returned by GenerateFree is not stored in any wave reference variable.
By contrast, this function does not leak:

Function NoLeaks()
Wave w = GenerateFree() // w references the free wave
Duplicate w,dummy
Variable maxVal = WaveMax(w) // WaveMax is a built-in function
// The free wave is released when w goes out of scope

End

In the Leaks function, there would be no leak if you replaced the call to WaveMax with a call to a user-
defined function. This is because Igor automatically creates a wave reference variable when you pass a
wave to a user-defined function. Because this distinction is subtle, it is best to always store a free wave in
your own explicit wave reference variable.

Converting a Free Wave to a Global Wave
You can use MoveWave to move a free wave into a global data folder, in which case it ceases to be free. If
the wave was created by NewFreeWave its name will be 'f'. You can use MoveWave to provide it with a
more descriptive name.

Here is an example illustrating Make/FREE:

Function Test()
Make/FREE/N=(50,50) w
SetScale x,-5,8,w
SetScale y,-7,12,w
w= exp(-(x^2+y^2))
NewImage w
if(GetRTError(1) != 0)

Print "Can't use a free wave here"
endif
MoveWave w,root:wasFree
NewImage w

End

Note that MoveWave requires that the new wave name, wasFree in this case, be unique within the destina-
tion data folder.

To determine if a given wave is free or global, use the WaveType function with the optional selector = 2.

Free Data Folders
Free data folders are data folders that are not part of any data folder hierarchy. Their principal use is in mul-
tithreaded wave assignment using the MultiThread keyword in a function. They can also be used for tem-
porary storage within functions.

Free data folders are recommended for advanced programmers only.

Note: Free data folders are saved only in packed experiment files. They are not saved in unpacked
experiments and are not saved by the SaveData operation or the Data Browser's Save Copy
button. In general, they are intended for temporary computation purposes only.

You create a free data folder using the NewFreeDataFolder function. You access it using the data folder ref-
erence returned by that function.

After using SetDataFolder with a free data folder, be sure to restore it to the previous value, like this:

Function Test()
DFREF dfrSave = GetDataFolderDFR()

SetDataFolder NewFreeDataFolder() // Create new free data folder.

Chapter IV-3 — User-Defined Functions

IV-89

. . .

SetDataFolder dfrSave
End

This is good programming practice in general but is especially important when using free data folders.

Free data folders can not be used in situations where global persistence is required such as in graphs, tables
and controls. In other words, you should use objects in free data folders for short-term computation pur-
poses only.

For a discussion of multithreaded assignment statements, see Automatic Parallel Processing with Multi-
Thread on page IV-303. For an example using free data folders, see Data Folder Reference MultiThread
Example on page IV-304.

Free Data Folder Lifetime
A free data folder is automatically deleted when the last reference to it disappears.

Data folder references can be stored in:

1. Data folder reference variables in user-defined functions
2. Data folder reference fields in structures
3. Elements of a data folder reference wave (created with Make/DF)
4. Igor's internal current data folder reference variable

A data folder reference disappears when:

1. The data folder reference variable containing it is explicitly cleared using KillDataFolder.
2. The data folder reference variable containing it is reassigned to refer to another data folder.
3. The data folder reference variable containing it goes out-of-scope and ceases to exist when the func-

tion in which it was created returns.
4. The data folder reference wave element containing it is deleted or the data folder reference wave is

killed.
5. The current data folder is changed which causes Igor's internal current data folder reference vari-

able to refer to another data folder.

When there are no more references to a free data folder, Igor automatically deletes it.

In this example, a free data folder reference variable is cleared by KillDataFolder:

Function Test1()
DFREF dfr= NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because dfr references it.
. . .
KillDataFolder dfr // dfr no longer refers to the free data folder

End

KillDataFolder kills the free data folder only if the given DFREF variable contains the last reference to it.

In the next example, the free data folder is automatically deleted when the DFREF that references it is
changed to reference another data folder:

Function Test2()
DFREF dfr= NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because dfr references it.
. . .
DFREF dfr= root:
// The free data folder is deleted since there are no references to it.

End

Chapter IV-3 — User-Defined Functions

IV-90

In the next example, a free data folder is created and a reference is stored in a local data folder reference
variable. When the function ends, the DFREF ceases to exist and the free data folder is automatically
deleted:

Function Test3()
DFREF dfr= NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because dfr references it.
. . .

End // The free data folder is deleted because dfr no longer exists.

The fourth case, where a data folder reference is stored in a data folder reference wave, is discussed under
Data Folder Reference Waves on page IV-76.

In the next example, the free data folder is referenced by Igor's internal current data folder reference vari-
able because it is the current data folder. When the current data folder is changed, there are no more refer-
ences to the free data folder and it is automatically deleted:

Function Test4()
SetDataFolder NewFreeDataFolder() // Create new free data folder.
// The free data folder persists because it is the current data folder
// and therefore is referenced by Igor's internal
// current data folder reference variable.
. . .

// Change Igor's internal current data folder reference
SetDataFolder root:
// The free data folder is since there are no references to it.

End

Free Data Folder Objects Lifetime
Next we consider what happens to objects in a free data folder when the free data folder is deleted. In this
event, numeric and string variables in the free data folder are unconditionally automatically deleted. A
wave is automatically deleted if there are no wave references to it. If there is a wave reference to it, the wave
survives and becomes a free wave. Free waves are waves that exists outside of any data folder as explained
under Free Waves on page IV-84.

For example:

Function Test()
SetDataFolder NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because it is the current data folder.

Make jack // Make a wave and an automatic wave reference

. . .

SetDataFolder root:
// The free data folder is deleted since there are no references to it.
// Because there is a reference to the wave jack, it persists
// and becomes a free wave.

. . .

End // The wave reference to jack ceases to exist so jack is deleted

When this function ends, the reference to the wave jack ceases to exist, there are no references to jack, and
it is automatically deleted.

Next we look at a slight variation. In the following example, Make does not create an automatic wave ref-
erence because of the use of $, and we do not create an explicit wave reference:

Chapter IV-3 — User-Defined Functions

IV-91

Function Test()
SetDataFolder NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because it is the current data folder.

Make $"jack" // Make a wave but no wave reference
// jack persists because the current data folder references it.

. . .

SetDataFolder root:
// The free data folder is deleted since there are no references to it.
// jack is also deleted because there are no more references to it.

. . .

End

Converting a Free Data Folder to a Global Data Folder
You can use MoveDataFolder to move a free data folder into the global hierarchy. The data folder and all
of its contents then become global. The name of a free data folder created by NewFreeDataFolder is 'free-
root'. You should rename it after moving to a global context. For example:

Function Test()
DFREF saveDF = GetDataFolderDFR()
DFREF dfr = NewFreeDataFolder() // Create free data folder
SetDataFolder dfr // Set as current data folder
Make jack=sin(x/8) // Create some data in it
SetDataFolder saveDF // Restore original current data folder
MoveDataFolder dfr, root: // Free DF becomes root:freeroot
RenameDataFolder root:freeroot,TestDF // Rename with a proper name
Display root:TestDF:jack

End

Note that MoveDataFolder requires that the data folder name, freeroot in this case, be unique within the
destination data folder.

Structures in Functions
You can define structures in procedure files and use them in functions. Structures can be used only in user-
defined functions as local variables and their behavior is defined almost entirely at compile time. Runtime
or interactive definition and use of structures is not currently supported; for this purpose, use Data Folders
(see Chapter II-8, Data Folders), the StringByKey function (see page V-864), or the NumberByKey function
(see page V-602).

Use of structures is an advanced technique. If you are just starting with Igor programming, you may want
to skip this section and come back to it later.

Simple Structure Example
Before we get into the details, here is a quick example showing how to define and use a structure.

Structure DemoStruct
double dval
int32 ival
char str[100]

EndStructure

Function Subroutine(s)
STRUCT DemoStruct &s // Structure parameter

Chapter IV-3 — User-Defined Functions

IV-92

Printf "dval=%g; ival=%d; str=\"%s\"\r", s.dval, s.ival, s.str
End

Function Routine()
STRUCT DemoStruct s // Local structure instance
s.dval = 1.234
s.ival = 4321
s.str = "Hello"
Subroutine(s)

End

As this example shows, you define a structure type using the Structure keyword in a procedure file. You
define a local structure variable using the STRUCT keyword in a user-defined function. And you pass a
structure from one user-defined function to another as a pass-by-reference parameter, as indicated by the
use of & in the subroutine parameter declaration.

Defining Structures
Structures are defined in a procedure file with the following syntax:
Structure structureName

memType memName [arraySize] [, memName [arraySize]]
…

EndStructure

Structure member types (memType) can be any of the following Igor objects: Variable, String, WAVE,
NVAR, SVAR, DFREF, FUNCREF, or STRUCT.

Igor structures also support additional member types, as given in the next table, for compatibility with C
programming structures and disk files.

The Variable and double types are identical although Variable can be also specified as complex using the
/C flag.

The optional arraySize must be specified using an expression involving literal numbers or locally-defined
constants enclosed in brackets. The value must be between 1 and 400 for all but STRUCT where the upper
limit is 100. The upper limit is a consequence of how memory is allocated on the stack frame.

Structures are two-byte aligned. This means that if an odd number of bytes has been allocated and then a
nonchar field is defined, an extra byte of padding is inserted in front of the new field. This is mainly of
concern only when reading and writing structures from and to disk files.

Igor Member Type C Equivalent Byte Size Note

char signed char 1

uchar unsigned char 1

int16 16-bit int 2

uint16 unsigned 16-bit int 2

int32 32-bit int 4

uint32 unsigned 32-bit int 4

int64 64-bit int 8 Igor7 or later

uint64 unsigned 64-bit int 8 Igor7 or later

float float 4

double double 8

Chapter IV-3 — User-Defined Functions

IV-93

The Structure keyword can be preceded with the Static keyword (see page V-775) to make the definition
apply only to the current procedure window. Without the Static designation, structures defined in one pro-
cedure window may be used in any other.

Using Structures
To use (“instantiate”) a structure in a function, you must allocate a STRUCT variable using:
STRUCT sName name

where sName is the name of an existing structure and name is the local structure variable name.

To access a member of a structure, specify the STRUCT variable name followed by a “.” and the member name:
STRUCT Point pt
pt.v= 100

When a member is defined as an array:
Structure mystruct

Variable var1
Variable var2[10]
…

EndStructure

you must specify [index] to use a given element in the array:
STRUCT mystruct ms
ms.var2[n]= 22

Structure and field names must be literal and can not use $str notation.

The index value can be a variable calculated at runtime or a literal number.

If the field is itself a STRUCT, continue to append “.” and field names as needed.

You can define an array of structures as a field in a structure:

Structure mystruct
STRUCT Point pt[100] // Allowed as a sub-structure

EndStructure

However, you can not define an array of structures as a local variable in a function:

STRUCT Point pt[100] // Not allowed as a function local variable

WAVE, NVAR, SVAR, and FUNCREF members can be initialized using the same syntax as used for the cor-
responding non-structure variables. See Runtime Lookup of Globals on page IV-60 and Function Refer-
ences on page IV-98.

Structures can be passed to functions only by reference, which allows them to be both input and output
parameters (see Pass-By-Reference on page IV-54). The syntax is:
STRUCT sName &varName

In a user function you define the input parameter:
Function myFunc(s)

STRUCT mystruct &s
…

End

Char and uchar arrays can be treated as zero-terminated strings by leaving off the brackets. Because the Igor
compiler knows the size, the entire array can be used with no zero termination. Like normal string variables,
concatenation using += is allowed but substring assignment using [p1,p2]= subStr is not supported.

Chapter IV-3 — User-Defined Functions

IV-94

Structures, including substructures, can be copied using simple assignment from one structure to the other.
The source and destination structures must defined using the same structure name.

The Print can print individual elements of a structure or can print a summary of the entire STRUCT vari-
able.

Structure Example
Here is a contrived example using structures. Try executing foo(2):
Constant kCaSize = 5

Structure substruct
Variable v1
Variable v2

EndStructure

Structure mystruct
Variable var1
Variable var2[10]
String s1
WAVE fred
NVAR globVar1
SVAR globStr1
FUNCREF myDefaultFunc afunc
STRUCT substruct ss1[3]
char ca[kCaSize+1]

EndStructure

Function foo(n)
Variable n

Make/O/N=20 fred
Variable/G globVar1 = 111
String/G aGlobStr="a global string var"

STRUCT mystruct ms
ms.var1 = 11
ms.var2[n] = 22
ms.s1 = "string s1"
WAVE ms.fred // could have =name if want other than waves named fred
NVAR ms.globVar1
SVAR ms.globStr1 = aGlobStr
FUNCREF myDefaultFunc ms.afunc = anotherfunc
ms.ss1[n].v1 = ms.var1/2
ms.ss1[0] = ms.ss1[n]
ms.ca = "0123456789"
bar(ms,n)
Print ms.var1,ms.var2[n],ms.s1,ms.globVar1,ms.globStr1,ms.ss1[n].v1
Print ms.ss 1[n].v2,ms.ca,ms.afunc()
Print "a whole wave",ms.fred
Print "the whole ms struct:",ms

STRUCT substruct ss
ss = ms.ss1[n]
Print "copy of substruct",ss

End

Function bar(s,n)
STRUCT mystruct &s
Variable n

s.ss1[n].v2 = 99
s.fred = sin(x)
Display s.fred

End

Function myDefaultFunc()
return 1

End

Function anotherfunc()
return 2

End

Chapter IV-3 — User-Defined Functions

IV-95

Note the use of WAVE, NVAR, SVAR and FUNCREF in the function foo. These keywords are required both
in the structure definition and again in the function, when the structure members are initialized.

Built-In Structures
Igor includes a few special purpose, predefined structures for use with certain operations. Some of those
structures use these predefined general purpose structures:
Structure Rect

Int16 top,left,bottom,right
EndStructure

Structure Point
Int16 v,h

EndStructure

Structure RGBColor
UInt16 red, green, blue

EndStructure

A number of operations use built-in structures that the Igor programmer can use. See the command refer-
ence information for details about these structures and their members.

Applications of Structures
Structures are useful for reading and writing disk files. The FBinRead and the FBinWrite understand struc-
ture variables and read or write the entire structure from or to a disk file. The individual fields of the struc-
ture are byte-swapped if you use the /B flag.

Structures can be used in complex programming projects to reduce the dependency on global objects and
to simplify passing data to and getting data from functions. For example, a base function might allocate a
local structure variable and then pass that variable on to a large set of lower level routines. Because struc-
ture variables are passed by reference, data written into the structure by lower level routines is available to
the higher level. Without structures, you would have to pass a large number of individual parameters or
use global variables and data folders.

Using Structures with Windows and Controls
Action procedures for controls and window hook functions take parameters that use predefined structure
types. These are listed under Built-In Structures on page IV-95.

Advanced programmers should also be aware of userdata that can be associated with windows using the
SetWindow operation (see page V-739). Userdata is binary data that persists with individual windows; it

Operation Structure Name

Button WMButtonAction

CheckBox WMCheckboxAction

CustomControl WMCustomControlAction

ListBox WMListboxAction

ModifyFreeAxis WMAxisHookStruct

PopupMenu WMPopupAction

SetVariable WMSetVariableAction

SetWindow WMWinHookStruct

Slider WMSliderAction

TabControl WMTabControlAction

Chapter IV-3 — User-Defined Functions

IV-96

is suitable for storing structures. Storing structures in a window’s userdata is very handy in eliminating the
need for global variables and reduces the bookkeeping needed to synchronize those globals with the win-
dow’s life cycle. Userdata is also available for use with controls. See the ControlInfo, GetWindow,
GetUserData, and SetWindow operations.

Here is an example illustrating built-in and user-defined structures along with userdata in a control. Put the
following in the procedure window of a new experiment and run the Panel0 macro. Then click on the buttons.
Note that the buttons remember their state even if the experiment is saved and reloaded. To fully understand
this example, examine the definition of WMButtonAction in the Button operation (see page V-45).
#pragma rtGlobals=1 // Use modern global access method.

Structure mystruct
Int32 nclicks
double lastTime

EndStructure

Function ButtonProc(bStruct) : ButtonControl
STRUCT WMButtonAction &bStruct

if(bStruct.eventCode != 1)
return 0 // we only handle mouse down

endif

STRUCT mystruct s1
if(strlen(bStruct.userdata) == 0)

Print "first click"
else

StructGet/S s1,bStruct.userdata
String ctime= Secs2Date(s1.lastTime, 1)+" "+Secs2Time(s1.lastTime,1)

// Warning: Next command is wrapped to fit on the page.
Printf "button %s clicked %d time(s), last click =

%s\r",bStruct.ctrlName,s1.nclicks,ctime
endif
s1.nclicks += 1
s1.lastTime= datetime
StructPut/S s1,bStruct.userdata
return 0

End

Window Panel0() : Panel
PauseUpdate; Silent 1 // building window…
NewPanel /W=(150,50,493,133)
SetDrawLayer UserBack
Button b0,pos={12,8},size={50,20},proc=ButtonProc,title="Click"
Button b1,pos={65,8},size={50,20},proc=ButtonProc,title="Click"
Button b2,pos={119,8},size={50,20},proc=ButtonProc,title="Click"
Button b3,pos={172,8},size={50,20},proc=ButtonProc,title="Click"
Button b4,pos={226,8},size={50,20},proc=ButtonProc,title="Click"

EndMacro

Limitations of Structures
Although structures can reduce the need for global variables, they do not eliminate them altogether. A structure
variable, like all local variables in functions, disappears when its host function returns. In order to maintain state
information, you need to store and retrieve structure information using global variables. You can do this using
a global variable for each field or, with certain restrictions, you can store entire structure variables in a single
global using the StructPut operation (see page V-869) and the StructGet operation (see page V-868).

As of Igor Pro 5.03, a structure can be passed to an external operation or function. See the Igor XOP Toolkit
manual for details.

Static Functions
You can create functions that are local to the procedure file in which they appear by inserting the keyword
Static in front of Function (see Static on page V-775 for usage details). The main reason for using this tech-
nique is to minimize the possibility of your function names conflicting with other names, thereby making
the use of common intuitive names practical.

Chapter IV-3 — User-Defined Functions

IV-97

Functions normally have global scope and are available in any part of an Igor experiment, but the static
keyword limits the scope of the function to its procedure file and hides it from all other procedure files.
Static functions can only be used in the file in which they are defined. They can not be called from the
command line and they cannot be accessed from macros.

Because static functions cannot be executed from the command line, you will have write a public test func-
tion to test them.

You can break this rule and access a static function using a module name; see Regular Modules on page
IV-222.

Non-static functions (functions without the static keyword) are sometimes called “public” functions.

ThreadSafe Functions
A ThreadSafe function is one that can operate correctly during simultaneous execution by multiple threads.

ThreadSafe user functions provide support for multiprocessing and can be used for preemptive multitask-
ing background tasks.

Note: Writing a multitasking program is for expert programmers only. Intermediate programmers can
write thread-safe curve-fitting functions and multithreaded assignment statements; see
Automatic Parallel Processing with MultiThread on page IV-303. Beginning programmers
should gain experience with regular programming before using multitasking.

You create thread safe functions by inserting the keyword ThreadSafe in front of Function. For example:
ThreadSafe Function myadd(a,b)

Variable a,b

return a+b
End

Only a subset of Igor’s built-in functions and operations can be used in a threadsafe function. Generally,
numeric or utility functions can be used but those that access windows can not. To determine if a routine is
ThreadSafe, use the Command Help tab of the Help Browser.

Although file operations are listed as threadsafe, they have certain limitations when running in a threadsafe
function. If a file load hits a condition that normally would need user assistance, the load is aborted. No
printing to history is done and there is no support for symbolic paths; use PathInfo and pass the path as a
string input parameter.

Threadsafe functions can call other threadsafe functions but may not call non-threadsafe functions. Non-
threadsafe functions can call threadsafe functions.

When threadsafe functions execute in the main thread, they have normal access to data folders, waves, and
variables. But when running in a preemptive thread, threadsafe functions use their own private data fold-
ers, waves, and variables.

When a thread is started, waves can be passed to the function as input parameters. Such waves are flagged
as being in use by the thread, which prevents any changes to the size of the wave. When all threads under
a given main thread are finished, the waves return to normal. You can pass data folders between the main
thread and preemptive threads but such data folders are never shared.

See ThreadSafe Functions and Multitasking on page IV-308 for a discussion of programming with pre-
emptive multitasking threads.

Chapter IV-3 — User-Defined Functions

IV-98

Function Overrides
In some very rare cases, you may need to temporarily change an existing function. When that function is part
of a package provided by someone else, or by WaveMetrics, it may be undesirable or difficult to edit the orig-
inal function. By using the keyword “Override” in front of “Function” you can define a new function that will
be used in place of another function of the same name that is defined in a different and later procedure file.

Although it is difficult to determine the order in which procedure files are compiled, the main procedure
window is always first. Therefore, always define override functions in the main procedure file.

Although you can override static functions, you may run into a few difficulties. If there are multiple files
with the same static function name, your override will affect all of them, and if the different functions have
different parameters then you will get a link error.

Here is an example of the Override keyword. In this example, start with a new experiment and create a new
procedure window. Insert the following in the new window (not the main procedure window).
Function foo()

print "this is foo"
End

Function Test()
foo()

End

Now, on the command line, execute Test(). You will see “this is foo” in the history.

Open the main procedure window and insert the following:
Override Function foo()

print "this is an override version of foo"
End

Now execute Test() again. You will see the “this is an override version of foo” in the history.

Function References
Function references provide a way to pass a function to a function. This is a technique for advanced pro-
grammers. If you are just starting with Igor programming, you may want to skip this section and come back
to it later.

To specify that an input parameter to a function is a function reference, use the following syntax:
Function Example(f)

FUNCREF myprotofunc f
. . .

End

This specifies that the input parameter f is a function reference and that a function named myprotofunc
specifies the kind of function that is legal to pass. The calling function passes a reference to a function as the
f parameter. The called function can use f just as it would use the prototype function.

If a valid function is not passed then the prototype function is called instead. The prototype function can
either be a default function or it can contain error handling code that makes it obvious that a proper function
was not passed.

Here is the syntax for creating function reference variables in the body of a function:
FUNCREF protoFunc f = funcName
FUNCREF protoFunc f = $"str"
FUNCREF protoFunc f = <FuncRef>

Chapter IV-3 — User-Defined Functions

IV-99

As shown, the right hand side can take either a literal function name, a $ expression that evaluates to a func-
tion name at runtime, or it can take another FUNCREF variable.

FUNCREF variables can refer to external functions as well as user-defined functions. However, the proto-
type function must be a user-defined function and it must not be static.

Although you can store a reference to a static function in a FUNCREF variable, you can not then use that
variable with Igor operations that take a function as an input. FuncFit is an example of such an operation.

Following are some example functions and FUNCREFs that illustrate several concepts:
Function myprotofunc(a)

Variable a

print "in myprotofunc with a= ",a
End

Function foo1(var1)
Variable var1

print "in foo1 with a= ",var1
End

Function foo2(a)
Variable a

print "in foo2 with a= ",a
End

Function foo3(a)
Variable a

print "in foo3 with a= ",a
End

Function badfoo(a,b)
Variable a,b

print "in badfoo with a= ",a
End

Function bar(a,b,fin)
Variable a,b
FUNCREF myprotofunc fin

if(a==1)
FUNCREF myprotofunc f= foo1

elseif(a==2)
FUNCREF myprotofunc f= $"foo2"

elseif(a==3)
FUNCREF myprotofunc f= fin

endif
f(b)

End

For the above functions, the following table shows the results for various invocations of the bar function
executed on the command line:

Executing bar(3,55,badfoo) generates a syntax error dialog that highlights “badfoo” in the command.
This error results because the format of the badfoo function does not match the format of the prototype
function, myprotofunc.

Chapter IV-3 — User-Defined Functions

IV-100

Conditional Compilation
Compiler directives can be used to conditionally include or exclude blocks of code. This is especially useful
when an XOP may or may not be available. It is also convenient for supporting different versions of Igor
with the same code and for testing and debugging code.
For example, to enable a block of procedure code depending on the presence or absence of an XOP, use
#if Exists("nameOfAnXopRoutine")

<code using XOP routines>
#endif

To conditionally compile based on the version of Igor, use:
#if IgorVersion() < 7.00

<code for Igor6 or before>
#else

<code for Igor7 or later>
#endif

Conditional Compilation Directives
The conditional compiler directives are modeled after the C/C++ language. Unlike other #keyword direc-
tives, these may be indented. For defining symbols, the directives are:
#define symbol

#undef symbol

For conditional compilation, the directives are:
#ifdef symbol

#ifndef symbol

#if expression

#elif expression

#else

#endif

Expressions are ordinary Igor expressions, but cannot involve any user-defined objects. They evaluate to
TRUE if the absolute value is > 0.5.

Conditionals must be either completely outside or completely inside function definitions; they cannot
straddle a function definition. Conditionals cannot be used within macros but the defined function can.

Nesting depth is limited to 16 levels. Trailing text other than a comment is illegal.

Conditional Compilation Symbols
#define is used purely for defining symbols (there is nothing like C’s preprocessor) and the only use of a
symbol is with #if, #ifdef, #ifndef and the defined function.

The defined function allows you to test if a symbol was defined using #define:

Command Result
bar(1,33,foo3) in foo1 with a= 33

bar(2,44,foo3) in foo2 with a= 44

bar(3,55,foo3) in foo3 with a= 55

bar(4,55,foo3) in myprotofunc with a= 55

Chapter IV-3 — User-Defined Functions

IV-101

#if defined(symbol)

Unlike C, you cannot use #if defined(symbol).

Symbols exist only in the file where they are defined; the only exception is for symbols defined in the main pro-
cedure window, which are available to all other procedure files except independent modules. In addition, you
can define global symbols that are available in all procedure windows (including independent modules) using:
SetIgorOption poundDefine=symb

This adds one symbol to a global list. You can query the global list using:
SetIgorOption poundDefine=symb?

This sets V_flag to 1 if symb exists or 0 otherwise. To remove a symbol from the global list use:
SetIgorOption poundUndefine=symb

For non-independent module procedure windows, a symbol is defined if it exists in the global list or in the
main procedure window’s list or in the given procedure window.

For independent module procedure windows, a symbol is defined if it exists in the global list or in the given
procedure window; it does not use the main procedure window list.

A symbol defined in a global list is not undefined by a #undef in a procedure window.

Predefined Global Symbols
These global symbols are predefined if appropriate and available in all procedure windows:

Conditional Compilation Examples
#define MYSYMBOL

#ifdef MYSYMBOL

Function foo()
Print "This is foo when MYSYMBOL is defined"

End

#else

Function foo()
Print "This is foo when MYSYMBOL is NOT defined"

End

#endif // MYSYMBOL

// This works in Igor Pro 6.10 or later
#if IgorVersion() >= 7.00

<Conditionally for Igor7 or later here>
#else

<Conditionally for Igor6 or before here>
#endif

// This works in Igor Pro 6.20 or later
#if defined(MACINTOSH)

<conditionally compiled code here>

Symbol Automatically Predefined If

MACINTOSH The Igor application is a Macintosh application.

WINDOWS The Igor application is a Windows application.

IGOR64 The Igor application is a 64-bit application.

Chapter IV-3 — User-Defined Functions

IV-102

#endif

Function Errors
During function compilation, Igor checks and reports syntactic errors and errors in parameter declarations.
The normal course of action is to edit the offending function and try to compile again.

Runtime errors in functions are not reported on the spot. Instead, Igor saves information about the error
and function execution continues. Igor presents an error dialog only after the last function ceases execution
and Igor returns to the idle state. If multiple runtime errors occur, only the first is reported.

When a runtime error occurs, after function execution ends, Igor presents an error dialog:

In this example, we tried to pass to the AppendToGraph function a reference to a wave that did not exist.
To find the source of the error, you should use Igor’s debugger and set it to break on error (see Debugging
on Error on page IV-199 for details).

Sophisticated programmers may want to detect and deal with runtime errors on their own. The GetRTError
function (see page V-270) can be used to check if an error occurred, and optionally to clear the error so that
Igor doesn’t report it.

Normally, when an error occurs in a built-in function, the built-in function does not post an error but
instead returns 0, NaN or an empty string as the function result. As a debugging aid, you can use the rtFunc-
tionErrors pragma to force Igor to post an error. See The rtFunctionErrors Pragma on page IV-51 for details.

Coercion in Functions
The term “coercion” means the conversion of a value from one numeric precision or numeric type to
another. Consider this example:
Function foo(awave)

WAVE/C awave

Variable/C var1

var1 = awave[2]*cmplx(2,3)
return real(var1)

End

The parameter declaration specifies that awave is complex. You can pass any kind of wave you like but it
will be coerced into complex before use. For example, if you pass a real valued integer wave the value at
point index 2 will be converted to double precision and zero will be used for the imaginary part.

Operations in Functions
You can call most operations from user-defined functions. To provide this capability, WaveMetrics had to
create special code for each operation. Some operations weren’t worth the trouble or could cause problems.
If an operation can’t be invoked from a function, an error message is displayed when the function is com-
piled. The operations that can’t be called from a function are:

Chapter IV-3 — User-Defined Functions

IV-103

If you need to invoke one of these operations from a user-defined function, use the Execute operation. See
The Execute Operation on page IV-190.

While Modify can not be called from a function, ModifyGraph, ModifyTable and ModifyLayout can.

You can use the NewLayout instead of Layout, the AppendLayoutObject instead of AppendToLayout, and
the RemoveLayoutObjects instead of RemoveFromLayout.

External operations implemented by very old XOPs also can not be called directly from user-defined func-
tions. Again, the solution is to use the Execute operation.

Updates During Function Execution
An update is an action that Igor performs which consists of:
• Reexecuting formulas for dependent objects whose antecedents have changed (see Chapter IV-9,

Dependencies)
• Redrawing graphs, tables and Gizmo plots which display waves that have changed
• Redrawing page layouts containing graphs, tables, Gizmo plots, or annotations that have changed
• Redrawing windows that have been uncovered

When no procedure is executing, Igor continually checks whether an update is needed and does an update
if necessary.

When a user-defined function is executing, Igor does no automatic updates at all. You can force an update
by calling the DoUpdate operation (see page V-147). Call DoUpdate if you don’t want to wait for the next
automatic update which will occur when function execution finishes.

Aborting Functions
There are two ways to prematurely stop procedure execution: a user abort or a programmed abort. Both
stop execution of all procedures, no matter how deeply nested.

You can abort function execution by pressing the User Abort Key Combinations or by clicking the Abort
button in the status bar. You may need to press the keys down for a while because Igor looks at the keyboard
periodically and if you don’t press the keys long enough, Igor will not see them.

A user abort does not directly return. Instead it sets a flag that stops loops from looping and then returns
using the normal calling chain. For this reason some code will still be executed after an abort but execution
should stop quickly. This behavior releases any temporary memory allocations made during execution.

A programmed abort occurs during procedure execution according to conditions set by the programmer.

The simplest programmed abort occurs when the Abort operation (see page V-18) is executed. Here is an
example:
if (numCells > 10)

Abort "Too many cells! Quitting."
endif
// code here doesn't execute if numCells > 10

Other programmed aborts can be triggered using the AbortOnRTE and AbortOnValue flow control key-
words. The try-catch-endtry flow control construct can be used for catching and testing for aborts. See Flow
Control for Aborts on page IV-45 for more details.

AppendToLayout Layout Modify OpenProc

PrintGraphs Quit See Also Stack

StackWindows Tile TileWindows

Chapter IV-3 — User-Defined Functions

IV-104

Igor Pro 7 Programming Extensions
The following programming features were added in Igor Pro 7. They bring Igor programming closer to the
C language. If you use these features, your procedures will not compile in Igor Pro 6.

Double and Complex Variable Types
You can use double and complex in functions as aliases for Variable and Variable/C:

Function foo()
double d = 4
complex c = cmplx(2,3)
Print d,c

End

Integer Variable Types
In Igor Pro 7 and later you can use the integer types int, int64 and uint64 for parameters and local vari-
ables in user-defined functions. You can also use int64 and uint64 in structures. See Integer Parameters
on page IV-33 for details.

Integer Expressions in User-Defined Functions
Prior to Igor Pro 7, all calculations were performed in double-precision floating point. In Igor Pro 7 or later,
Igor uses integer calculations when the destination is an integer type. See Expression Evaluation on page
IV-36 for details.

Inline Parameters in User-Defined Functions
In Igor Pro 7 and later you can declare user-defined functions parameters inline. See Inline Parameters on
page IV-33 for details.

Line Continuation in User-Defined Functions
In user-defined functions in Igor Pro 7 or later, you can use arbitrarily long expressions by including a line
continuation character at the very end of a line. See Line Continuation on page IV-35 for details.

Bit Shift Operators in User-Defined Functions
Igor Pro 7 and later support the bit shift operators << and >> on local variables. See Bit Shift Operators on
page IV-40 for details.

Increment and Decrement Operators in User-Defined Functions
In a user-defined function in Igor Pro 7 or later, you can use increment and decrement operators on local
variables. See Increment and Decrement Operators on page IV-40 for details.

Legacy Code Issues
This section discusses changes that have occurred in Igor programming over the years. If you are writing
new code, you don’t need to be concerned with these issues. If you are working with existing code, you may
run into some of them.

If you are just starting to learn Igor programming, you have enough to think about already, so it is a good
idea to skip this section. Once you are comfortable with the modern techniques described above, come back
and learn about these antiquated techniques.

Chapter IV-3 — User-Defined Functions

IV-105

Old-Style Comments and Compatibility Mode
As of Igor Pro 4.0, the old comment character, a vertical bar (|), has been replaced and should no longer be
used when writing new procedures. In Igor Pro 4.0 and later, the | character is used as the bitwise OR oper-
ator (see Operators on page IV-5).

In order to run old procedures which use | as the comment symbol, Igor supports a compatibility mode.
This mode is a property of an experiment. When the current experiment is in compatibility mode, Igor inter-
prets | as a comment symbol. Normally, when the current experiment is not in compatibility mode, Igor
interprets | as bitwise OR.

You put the current experiment in compatibility mode by executing the following on the command line:

Silent 100

You take the current experiment out of compatibility mode by executing:
Silent 101

When you execute these commands, Igor automatically recompiles all procedure files in the current exper-
iment using the new mode.

All experiments created pre-Igor 4 are automatically in compatibility mode until you update them and their
procedures.

We strongly recommend that you update old experiments and procedures so that you don’t need to use
compatibility mode. Until you do so, your old experiments will not work with new procedure files that use
| as bitwise OR. Here are the steps to update an experiment and its procedures:

1. In each old procedure file, replace each | symbol that is used to introduce a comment with //.
Use Edit→Find and Edit→Find Same to find each occurrence of |. Do not do a mass replace because
you may inadvertently change a | symbol used in the old bitwise OR operator (%|, which is still
supported) or in a string.

2. On the command line, take the experiment out of compatibility mode by executing:
Silent 101
Igor will recompile procedures.

3. If there are any remaining obsolete uses of |, Igor will display a compile error dialog. Fix the error
and recompile the procedures until you get no more errors.

If you create procedure files that are used by other people (either in your group or for public use) and you
want to use the new logic operations, such as | (bitwise OR) or || (logical OR), which require compatibility
mode to be off (Silent 101), then you can specify
#pragma rtGlobals=2

in place of the normal rtGlobals=1.

If your procedure file is included in an experiment running in compatibility mode (Silent 100) then an
alert dialog will be presented that will allow the user to turn compatibility mode off. However, keep in
mind that when the procedures are recompiled in the new mode, the user’s other procedures will generate
errors if they use the obsolete comment symbol.

Text After Flow Control
Prior to Igor Pro 4, Igor ignored any extraneous text after a flow control statement. Such text was an error,
but Igor did not detect it.

Igor now checks for extra text after flow control statements. When found, a dialog is presented asking the
user if such text should be considered an error or not. The answer lasts for the life of the Igor session.

Because previous versions of Igor ignored this extra text, it may be common for existing procedure files to have
this problem. The text may in many cases simply be a typographic error such as an extra closing parenthesis:

if(a==1))

Chapter IV-3 — User-Defined Functions

IV-106

In other cases, the programmer may have thought they were creating an elseif construct:
else if(a==2)

even though the “if(a==2)” part was simply ignored. In some cases this may represent a bug in the program-
mer’s code but most of the time it is asymptomatic.

Global Variables Used by Igor Operations
The section Local Variables Used by Igor Operations on page IV-56 explains that certain Igor operations
create and set certain special local variables. Very old procedure code expects such variables to be created
as global variables and must be rewritten.

Also explained in Local Variables Used by Igor Operations on page IV-56 is the fact that some operations,
such as CurveFit, look for certain special local variables which modify the behavior of the operations. For his-
toric reasons, operations that look for special variables will look for global variables in the current data folder
if the local variable is not found. This behavior is unfortunate and may be removed from Igor some day. New
programming should use local variables for this purpose.

Direct Reference to Globals
The section Accessing Global Variables and Waves on page IV-59 explains how to access globals from a
procedure file. Very old procedure files may attempt to reference globals directly, without using WAVE,
NVAR, or SVAR statements. This section explains how to update such procedures.

Here are the steps for converting a procedure file to use the runtime lookup method for accessing globals:
1. Insert the #pragma rtGlobals=3 statement, with no indentation, at or near the top of the procedure

in the file.
2. Click the Compile button to compile the procedures.
3. If the procedures use a direct references to access a global, Igor will display an error dialog indicat-

ing the line on which the error occurred. Add an NVAR, SVAR or WAVE reference.
4. If you encountered an error in step 3, fix it and return to step 2.

	User-Defined Functions
	Overview
	Function Syntax
	The Function Name
	The Procedure Subtype
	The Parameter List and Parameter Declarations
	Integer Parameters
	Optional Parameters
	Inline Parameters
	Local Variable Declarations
	Body Code
	Line Continuation
	The Return Statement

	Expression Evaluation
	Integer Expressions
	Integer Expressions in Wave Assignment Statements

	Conditional Statements in Functions
	If-Else-Endif
	If-Elseif-Endif
	Comparisons

	Operators in Functions
	Bitwise and Logical Operators
	Bit Shift Operators
	Increment and Decrement Operators

	Switch Statements
	Loops
	Do-While Loop
	Nested Do-While Loops
	While Loop
	For Loop
	Break Statement
	Continue Statement

	Flow Control for Aborts
	AbortOnRTE Keyword
	AbortOnValue Keyword
	try-catch-endtry Flow Control
	User Abort Key Combinations

	Constants
	Pragmas
	The rtGlobals Pragma
	The version Pragma
	The IgorVersion Pragma
	The hide Pragma
	The ModuleName Pragma
	The IndependentModule Pragma
	The rtFunctionErrors Pragma
	The TextEncoding Pragma
	Unknown Pragmas

	Proc Pictures
	How Parameters Work
	Example of Pass-By-Value
	Pass-By-Reference
	How Waves Are Passed
	Using Optional Parameters

	Local Versus Global Variables
	Local Variables Used by Igor Operations
	Converting a String into a Reference Using $
	Using $ to Refer to a Window
	Using $ In a Data Folder Path

	Compile Time Versus Runtime
	Accessing Global Variables and Waves
	Runtime Lookup of Globals
	Put WAVE Declaration After Wave Is Created
	Runtime Lookup Failure
	Runtime Lookup Failure and the Debugger
	Accessing Complex Global Variables and Waves
	Accessing Text Waves
	Accessing Global Variables and Waves Using Liberal Names
	Runtime Lookup Example
	Automatic Creation of WAVE, NVAR and SVAR References

	Wave References
	Automatic Creation of WAVE References
	Standalone WAVE Reference Statements
	Inline WAVE Reference Statements
	WAVE Reference Types
	WAVE Reference Type Flags
	Problems with Automatic Creation of WAVE References
	WAVE Reference Is Needed to Pass a Wave By Name
	Wave Reference Function Results
	Wave Reference Waves

	Data Folder References
	Using Data Folder References
	The /SDFR Flag
	The DFREF Type
	Built-in DFREF Functions
	Checking Data Folder Reference Validity
	Data Folder Reference Function Results
	Data Folder Reference Waves

	Accessing Waves in Functions
	Wave Reference Passed as Parameter
	Wave Accessed Via String Passed as Parameter
	Wave Accessed Via String Calculated in Function
	Wave Accessed Via Literal Wave Name
	Wave Accessed Via Wave Reference Function

	Destination Wave Parameters
	Wave Reference as Destination Wave
	Exceptions To Destination Wave Rules
	Updating of Destination Wave References
	Inline Wave References With Destination Waves
	Destination Wave Reference Issues
	Changes in Destination Wave Behavior

	Programming With Trace Names
	Trace Name Parameters
	User-defined Trace Names
	Trace Name Programming Example

	Free Waves
	Free Wave Created When Free Data Folder Is Deleted
	Free Wave Created For User Function Input Parameter
	Free Wave Lifetime
	Free Wave Leaks
	Converting a Free Wave to a Global Wave

	Free Data Folders
	Free Data Folder Lifetime
	Free Data Folder Objects Lifetime
	Converting a Free Data Folder to a Global Data Folder

	Structures in Functions
	Simple Structure Example
	Defining Structures
	Using Structures
	Structure Example
	Built-In Structures
	Applications of Structures
	Using Structures with Windows and Controls
	Limitations of Structures

	Static Functions
	ThreadSafe Functions
	Function Overrides
	Function References
	Conditional Compilation
	Conditional Compilation Directives
	Conditional Compilation Symbols
	Predefined Global Symbols
	Conditional Compilation Examples

	Function Errors
	Coercion in Functions
	Operations in Functions
	Updates During Function Execution
	Aborting Functions
	Igor Pro 7 Programming Extensions
	Double and Complex Variable Types
	Integer Variable Types
	Integer Expressions in User-Defined Functions
	Inline Parameters in User-Defined Functions
	Line Continuation in User-Defined Functions
	Bit Shift Operators in User-Defined Functions
	Increment and Decrement Operators in User-Defined Functions

	Legacy Code Issues
	Old-Style Comments and Compatibility Mode
	Text After Flow Control
	Global Variables Used by Igor Operations
	Direct Reference to Globals

